Adding files

This commit is contained in:
Vedant Dave 2023-05-22 14:11:11 +02:00
parent 99558ce92b
commit ab322e3f86
4 changed files with 39 additions and 195 deletions

View File

@ -7,7 +7,6 @@ import torch
import torchvision
import numpy as np
from termcolor import colored
from datetime import datetime
FORMAT_CONFIG = {
'rl': {
@ -94,10 +93,8 @@ class MetersGroup(object):
class Logger(object):
def __init__(self, log_dir, use_tb=True, config='rl'):
self._log_dir = log_dir
now = datetime.now()
dt_string = now.strftime("%d_%m_%Y-%H_%M_%S")
if use_tb:
tb_dir = os.path.join(log_dir, 'runs/tb_'+dt_string)
tb_dir = os.path.join(log_dir, 'tb')
if os.path.exists(tb_dir):
shutil.rmtree(tb_dir)
self._sw = SummaryWriter(tb_dir)

124
sac_ae.py
View File

@ -6,7 +6,7 @@ import copy
import math
import utils
from encoder import make_encoder, club_loss, TransitionModel
from encoder import make_encoder
from decoder import make_decoder
LOG_FREQ = 10000
@ -70,8 +70,10 @@ class Actor(nn.Module):
self.outputs = dict()
self.apply(weight_init)
def forward(self, obs, compute_pi=True, compute_log_pi=True, detach_encoder=False):
obs, _, _ = self.encoder(obs, detach=detach_encoder)
def forward(
self, obs, compute_pi=True, compute_log_pi=True, detach_encoder=False
):
obs = self.encoder(obs, detach=detach_encoder)
mu, log_std = self.trunk(obs).chunk(2, dim=-1)
@ -98,6 +100,7 @@ class Actor(nn.Module):
log_pi = None
mu, pi, log_pi = squash(mu, pi, log_pi)
return mu, pi, log_pi, log_std
def log(self, L, step, log_freq=LOG_FREQ):
@ -156,7 +159,7 @@ class Critic(nn.Module):
def forward(self, obs, action, detach_encoder=False):
# detach_encoder allows to stop gradient propogation to encoder
obs, _ , _ = self.encoder(obs, detach=detach_encoder)
obs = self.encoder(obs, detach=detach_encoder)
q1 = self.Q1(obs, action)
q2 = self.Q2(obs, action)
@ -179,52 +182,6 @@ class Critic(nn.Module):
L.log_param('train_critic/q1_fc%d' % i, self.Q1.trunk[i * 2], step)
L.log_param('train_critic/q2_fc%d' % i, self.Q2.trunk[i * 2], step)
class CURL(nn.Module):
"""
CURL
"""
def __init__(self, obs_shape, z_dim, a_dim, batch_size, critic, critic_target, output_type="continuous"):
super(CURL, self).__init__()
self.batch_size = batch_size
self.encoder = critic.encoder
self.encoder_target = critic_target.encoder
self.W = nn.Parameter(torch.rand(z_dim, z_dim))
self.combine = nn.Linear(z_dim + a_dim, z_dim)
self.output_type = output_type
def encode(self, x, a=None, detach=False, ema=False):
"""
Encoder: z_t = e(x_t)
:param x: x_t, x y coordinates
:return: z_t, value in r2
"""
if ema:
with torch.no_grad():
z_out = self.encoder_target(x)[0]
z_out = self.combine(torch.concat((z_out,a), dim=-1))
else:
z_out = self.encoder(x)[0]
if detach:
z_out = z_out.detach()
return z_out
def compute_logits(self, z_a, z_pos):
"""
Uses logits trick for CURL:
- compute (B,B) matrix z_a (W z_pos.T)
- positives are all diagonal elements
- negatives are all other elements
- to compute loss use multiclass cross entropy with identity matrix for labels
"""
Wz = torch.matmul(self.W, z_pos.T) # (z_dim,B)
logits = torch.matmul(z_a, Wz) # (B,B)
logits = logits - torch.max(logits, 1)[0][:, None]
return logits
class SacAeAgent(object):
"""SAC+AE algorithm."""
@ -268,12 +225,6 @@ class SacAeAgent(object):
self.decoder_update_freq = decoder_update_freq
self.decoder_latent_lambda = decoder_latent_lambda
self.transition_model = TransitionModel(
encoder_feature_dim,
hidden_dim,
action_shape[0],
encoder_feature_dim).to(device)
self.actor = Actor(
obs_shape, action_shape, hidden_dim, encoder_type,
encoder_feature_dim, actor_log_std_min, actor_log_std_max,
@ -300,11 +251,6 @@ class SacAeAgent(object):
# set target entropy to -|A|
self.target_entropy = -np.prod(action_shape)
self.CURL = CURL(obs_shape, encoder_feature_dim, action_shape[0],
obs_shape[0], self.critic,self.critic_target, output_type='continuous').to(self.device)
self.cross_entropy_loss = nn.CrossEntropyLoss()
self.decoder = None
if decoder_type != 'identity':
# create decoder
@ -335,10 +281,6 @@ class SacAeAgent(object):
self.critic.parameters(), lr=critic_lr, betas=(critic_beta, 0.999)
)
self.cpc_optimizer = torch.optim.Adam(
self.CURL.parameters(), lr=encoder_lr
)
self.log_alpha_optimizer = torch.optim.Adam(
[self.log_alpha], lr=alpha_lr, betas=(alpha_beta, 0.999)
)
@ -387,6 +329,7 @@ class SacAeAgent(object):
target_Q) + F.mse_loss(current_Q2, target_Q)
L.log('train_critic/loss', critic_loss, step)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
@ -423,38 +366,12 @@ class SacAeAgent(object):
alpha_loss.backward()
self.log_alpha_optimizer.step()
def update_decoder(self, last_obs, last_action, last_reward, curr_obs, last_not_done, action, reward, next_obs, not_done, target_obs, L, step):
h_curr, mu_h_curr, std_h_curr = self.critic.encoder(curr_obs)
with torch.no_grad():
h_last, _, _ = self.critic.encoder(last_obs)
self.transition_model.init_states(last_obs.shape[0], self.device)
curr_state = self.transition_model.transition_step(h_last, last_action, self.transition_model.prev_history, last_not_done)
hist = curr_state["history"]
next_state = self.transition_model.transition_step(h_curr, action, hist, not_done)
next_state_mu = next_state["mean"]
next_state_sigma = next_state["std"]
next_state_sample = next_state["sample"]
pred_dist = torch.distributions.Normal(next_state_mu, next_state_sigma)
h, mu_h_next, logstd_h_next = self.critic.encoder(next_obs)
std_h_next = torch.exp(logstd_h_next)
enc_dist = torch.distributions.Normal(mu_h_next, std_h_next)
enc_loss = torch.mean(torch.distributions.kl.kl_divergence(enc_dist,pred_dist)) * 0.1
z_pos = self.CURL.encode(next_obs, action.detach(), ema=True)
logits = self.CURL.compute_logits(h_curr, z_pos)
labels = torch.arange(logits.shape[0]).long().to(self.device)
lb_loss = self.cross_entropy_loss(logits, labels) * 0.1
ub_loss = club_loss(h, mu_h_next, logstd_h_next, next_state_sample) * 0.1
def update_decoder(self, obs, target_obs, L, step):
h = self.critic.encoder(obs)
if target_obs.dim() == 4:
# preprocess images to be in [-0.5, 0.5] range
target_obs = utils.preprocess_obs(target_obs)
rec_obs = self.decoder(h)
rec_loss = F.mse_loss(target_obs, rec_obs)
@ -462,35 +379,26 @@ class SacAeAgent(object):
# see https://arxiv.org/pdf/1903.12436.pdf
latent_loss = (0.5 * h.pow(2).sum(1)).mean()
loss = rec_loss + enc_loss + lb_loss + ub_loss #self.decoder_latent_lambda * latent_loss
loss = rec_loss + self.decoder_latent_lambda * latent_loss
self.encoder_optimizer.zero_grad()
self.decoder_optimizer.zero_grad()
self.cpc_optimizer.zero_grad()
loss.backward()
self.encoder_optimizer.step()
self.decoder_optimizer.step()
self.cpc_optimizer.step()
L.log('train_ae/ae_loss', loss, step)
L.log('train_ae/lb_loss', lb_loss, step)
L.log('train_ae/ub_loss', ub_loss, step)
L.log('train_ae/enc_loss', enc_loss, step)
L.log('train_ae/dec_loss', rec_loss, step)
self.decoder.log(L, step, log_freq=LOG_FREQ)
def update(self, replay_buffer, L, step):
last_obs, last_action, last_reward, curr_obs, last_not_done, action, reward, next_obs, not_done = replay_buffer.sample()
#obs, action, reward, next_obs, not_done = replay_buffer.sample()
obs, action, reward, next_obs, not_done = replay_buffer.sample()
L.log('train/batch_reward', last_reward.mean(), step)
L.log('train/batch_reward', reward.mean(), step)
#self.update_critic(last_obs, last_action, last_reward, curr_obs, last_not_done, L, step)
self.update_critic(curr_obs, action, reward, next_obs, not_done, L, step)
self.update_critic(obs, action, reward, next_obs, not_done, L, step)
if step % self.actor_update_freq == 0:
#self.update_actor_and_alpha(last_obs, L, step)
self.update_actor_and_alpha(curr_obs, L, step)
self.update_actor_and_alpha(obs, L, step)
if step % self.critic_target_update_freq == 0:
utils.soft_update_params(
@ -505,7 +413,7 @@ class SacAeAgent(object):
)
if self.decoder is not None and step % self.decoder_update_freq == 0:
self.update_decoder(last_obs, last_action, last_reward, curr_obs, last_not_done, action, reward, next_obs, not_done, next_obs, L, step)
self.update_decoder(obs, obs, L, step)
def save(self, model_dir, step):
torch.save(

View File

@ -26,16 +26,13 @@ def parse_args():
parser.add_argument('--image_size', default=84, type=int)
parser.add_argument('--action_repeat', default=1, type=int)
parser.add_argument('--frame_stack', default=3, type=int)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
parser.add_argument('--resource_files', type=str)
parser.add_argument('--total_frames', default=10000, type=int)
# replay buffer
parser.add_argument('--replay_buffer_capacity', default=1000000, type=int)
# train
parser.add_argument('--agent', default='sac_ae', type=str)
parser.add_argument('--init_steps', default=1000, type=int)
parser.add_argument('--num_train_steps', default=1000000, type=int)
parser.add_argument('--batch_size', default=512, type=int)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--hidden_dim', default=1024, type=int)
# eval
parser.add_argument('--eval_freq', default=10000, type=int)
@ -146,10 +143,7 @@ def main():
from_pixels=(args.encoder_type == 'pixel'),
height=args.image_size,
width=args.image_size,
frame_skip=args.action_repeat,
img_source=args.img_source,
resource_files=args.resource_files,
total_frames=args.total_frames
frame_skip=args.action_repeat
)
env.seed(args.seed)
@ -218,65 +212,28 @@ def main():
L.log('train/episode', episode, step)
if episode_step == 0:
last_obs = obs
# sample action for data collection
if step < args.init_steps:
last_action = env.action_space.sample()
else:
with utils.eval_mode(agent):
last_action = agent.sample_action(last_obs)
curr_obs, last_reward, last_done, _ = env.step(last_action)
# allow infinit bootstrap
last_done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(last_done)
episode_reward += last_reward
# sample action for data collection
if step < args.init_steps:
action = env.action_space.sample()
else:
with utils.eval_mode(agent):
action = agent.sample_action(curr_obs)
next_obs, reward, done, _ = env.step(action)
# allow infinit bootstrap
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(done)
episode_reward += reward
replay_buffer.add(last_obs, last_action, last_reward, curr_obs, last_done_bool, action, reward, next_obs, done_bool)
last_obs = curr_obs
last_action = action
last_reward = reward
last_done = done
curr_obs = next_obs
# sample action for data collection
if step < args.init_steps:
action = env.action_space.sample()
else:
with utils.eval_mode(agent):
action = agent.sample_action(curr_obs)
action = agent.sample_action(obs)
# run training update
if step >= args.init_steps:
#num_updates = args.init_steps if step == args.init_steps else 1
num_updates = 1 if step == args.init_steps else 1
num_updates = args.init_steps if step == args.init_steps else 1
for _ in range(num_updates):
agent.update(replay_buffer, L, step)
next_obs, reward, done, _ = env.step(action)
# allow infinit bootstrap
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(done)
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(
done
)
episode_reward += reward
#replay_buffer.add(obs, action, reward, next_obs, done_bool)
replay_buffer.add(last_obs, last_action, last_reward, curr_obs, last_done_bool, action, reward, next_obs, done_bool)
replay_buffer.add(obs, action, reward, next_obs, done_bool)
obs = next_obs
episode_step += 1

View File

@ -75,26 +75,18 @@ class ReplayBuffer(object):
# the proprioceptive obs is stored as float32, pixels obs as uint8
obs_dtype = np.float32 if len(obs_shape) == 1 else np.uint8
self.last_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
self.curr_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
self.obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
self.next_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
self.last_actions = np.empty((capacity, *action_shape), dtype=np.float32)
self.actions = np.empty((capacity, *action_shape), dtype=np.float32)
self.last_rewards = np.empty((capacity, 1), dtype=np.float32)
self.rewards = np.empty((capacity, 1), dtype=np.float32)
self.last_not_dones = np.empty((capacity, 1), dtype=np.float32)
self.not_dones = np.empty((capacity, 1), dtype=np.float32)
self.idx = 0
self.last_save = 0
self.full = False
def add(self, last_obs, last_action, last_reward, curr_obs, last_done, action, reward, next_obs, done):
np.copyto(self.last_obses[self.idx], last_obs)
np.copyto(self.last_actions[self.idx], last_action)
np.copyto(self.last_rewards[self.idx], last_reward)
np.copyto(self.curr_obses[self.idx], curr_obs)
np.copyto(self.last_not_dones[self.idx], not last_done)
def add(self, obs, action, reward, next_obs, done):
np.copyto(self.obses[self.idx], obs)
np.copyto(self.actions[self.idx], action)
np.copyto(self.rewards[self.idx], reward)
np.copyto(self.next_obses[self.idx], next_obs)
@ -108,31 +100,25 @@ class ReplayBuffer(object):
0, self.capacity if self.full else self.idx, size=self.batch_size
)
last_obses = torch.as_tensor(self.last_obses[idxs], device=self.device).float()
last_actions = torch.as_tensor(self.last_actions[idxs], device=self.device)
last_rewards = torch.as_tensor(self.last_rewards[idxs], device=self.device)
curr_obses = torch.as_tensor(self.curr_obses[idxs], device=self.device).float()
last_not_dones = torch.as_tensor(self.last_not_dones[idxs], device=self.device)
obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
actions = torch.as_tensor(self.actions[idxs], device=self.device)
rewards = torch.as_tensor(self.rewards[idxs], device=self.device)
next_obses = torch.as_tensor(self.next_obses[idxs], device=self.device).float()
next_obses = torch.as_tensor(
self.next_obses[idxs], device=self.device
).float()
not_dones = torch.as_tensor(self.not_dones[idxs], device=self.device)
return last_obses, last_actions, last_rewards, curr_obses, last_not_dones, actions, rewards, next_obses, not_dones
return obses, actions, rewards, next_obses, not_dones
def save(self, save_dir):
if self.idx == self.last_save:
return
path = os.path.join(save_dir, '%d_%d.pt' % (self.last_save, self.idx))
payload = [
self.last_obses[self.last_save:self.idx],
self.last_actions[self.last_save:self.idx],
self.last_rewards[self.last_save:self.idx],
self.curr_obses[self.last_save:self.idx],
self.last_not_dones[self.last_save:self.idx],
self.obses[self.last_save:self.idx],
self.next_obses[self.last_save:self.idx],
self.actions[self.last_save:self.idx],
self.rewards[self.last_save:self.idx],
self.next_obses[self.last_save:self.idx],
self.not_dones[self.last_save:self.idx]
]
self.last_save = self.idx
@ -146,14 +132,10 @@ class ReplayBuffer(object):
path = os.path.join(save_dir, chunk)
payload = torch.load(path)
assert self.idx == start
self.last_obses[start:end] = payload[0]
self.last_actions[start:end] = payload[1]
self.last_rewards[start:end] = payload[2]
self.curr_obses[start:end] = payload[3]
self.last_not_dones[start:end] = payload[4]
self.obses[start:end] = payload[0]
self.next_obses[start:end] = payload[1]
self.actions[start:end] = payload[2]
self.rewards[start:end] = payload[3]
self.next_obses[start:end] = payload[4]
self.not_dones[start:end] = payload[4]
self.idx = end