Adding encoder
This commit is contained in:
parent
3dc9818eaa
commit
99558ce92b
190
encoder.py
190
encoder.py
@ -1,6 +1,5 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def tie_weights(src, trg):
|
||||
@ -11,6 +10,85 @@ def tie_weights(src, trg):
|
||||
|
||||
OUT_DIM = {2: 39, 4: 35, 6: 31}
|
||||
|
||||
'''
|
||||
class PixelEncoder(nn.Module):
|
||||
"""Convolutional encoder of pixels observations."""
|
||||
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32):
|
||||
super().__init__()
|
||||
|
||||
assert len(obs_shape) == 3
|
||||
|
||||
self.feature_dim = feature_dim
|
||||
self.num_layers = num_layers
|
||||
|
||||
self.convs = nn.ModuleList(
|
||||
[nn.Conv2d(obs_shape[0], num_filters, 3, stride=2)]
|
||||
)
|
||||
for i in range(num_layers - 1):
|
||||
self.convs.append(nn.Conv2d(num_filters, num_filters, 3, stride=1))
|
||||
|
||||
out_dim = OUT_DIM[num_layers]
|
||||
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim)
|
||||
self.ln = nn.LayerNorm(self.feature_dim)
|
||||
|
||||
self.outputs = dict()
|
||||
|
||||
def reparameterize(self, mu, logstd):
|
||||
std = torch.exp(logstd)
|
||||
eps = torch.randn_like(std)
|
||||
return mu + eps * std
|
||||
|
||||
def forward_conv(self, obs):
|
||||
obs = obs / 255.
|
||||
self.outputs['obs'] = obs
|
||||
|
||||
conv = torch.relu(self.convs[0](obs))
|
||||
self.outputs['conv1'] = conv
|
||||
|
||||
for i in range(1, self.num_layers):
|
||||
conv = torch.relu(self.convs[i](conv))
|
||||
self.outputs['conv%s' % (i + 1)] = conv
|
||||
|
||||
h = conv.view(conv.size(0), -1)
|
||||
return h
|
||||
|
||||
def forward(self, obs, detach=False):
|
||||
h = self.forward_conv(obs)
|
||||
|
||||
if detach:
|
||||
h = h.detach()
|
||||
|
||||
h_fc = self.fc(h)
|
||||
self.outputs['fc'] = h_fc
|
||||
|
||||
h_norm = self.ln(h_fc)
|
||||
self.outputs['ln'] = h_norm
|
||||
|
||||
out = torch.tanh(h_norm)
|
||||
self.outputs['tanh'] = out
|
||||
|
||||
return out
|
||||
|
||||
def copy_conv_weights_from(self, source):
|
||||
"""Tie convolutional layers"""
|
||||
# only tie conv layers
|
||||
for i in range(self.num_layers):
|
||||
tie_weights(src=source.convs[i], trg=self.convs[i])
|
||||
|
||||
def log(self, L, step, log_freq):
|
||||
if step % log_freq != 0:
|
||||
return
|
||||
|
||||
for k, v in self.outputs.items():
|
||||
L.log_histogram('train_encoder/%s_hist' % k, v, step)
|
||||
if len(v.shape) > 2:
|
||||
L.log_image('train_encoder/%s_img' % k, v[0], step)
|
||||
|
||||
for i in range(self.num_layers):
|
||||
L.log_param('train_encoder/conv%s' % (i + 1), self.convs[i], step)
|
||||
L.log_param('train_encoder/fc', self.fc, step)
|
||||
L.log_param('train_encoder/ln', self.ln, step)
|
||||
'''
|
||||
|
||||
class PixelEncoder(nn.Module):
|
||||
"""Convolutional encoder of pixels observations."""
|
||||
@ -65,17 +143,17 @@ class PixelEncoder(nn.Module):
|
||||
h_norm = self.ln(h_fc)
|
||||
self.outputs['ln'] = h_norm
|
||||
|
||||
h_tan = torch.tanh(h_norm)
|
||||
#out = torch.tanh(h_norm)
|
||||
|
||||
mu, logstd = torch.chunk(h_tan, 2, dim=-1)
|
||||
mu, logstd = torch.chunk(h_norm, 2, dim=-1)
|
||||
logstd = torch.tanh(logstd)
|
||||
self.outputs['mu'] = mu
|
||||
self.outputs['logstd'] = logstd
|
||||
|
||||
std = torch.tanh(h_norm)
|
||||
self.outputs['std'] = std
|
||||
self.outputs['std'] = logstd.exp()
|
||||
|
||||
out = self.reparameterize(mu, logstd)
|
||||
return out, mu, logstd
|
||||
self.outputs['tanh'] = out
|
||||
return out
|
||||
|
||||
def copy_conv_weights_from(self, source):
|
||||
"""Tie convolutional layers"""
|
||||
@ -97,7 +175,6 @@ class PixelEncoder(nn.Module):
|
||||
L.log_param('train_encoder/fc', self.fc, step)
|
||||
L.log_param('train_encoder/ln', self.ln, step)
|
||||
|
||||
|
||||
class IdentityEncoder(nn.Module):
|
||||
def __init__(self, obs_shape, feature_dim, num_layers, num_filters):
|
||||
super().__init__()
|
||||
@ -115,103 +192,6 @@ class IdentityEncoder(nn.Module):
|
||||
pass
|
||||
|
||||
|
||||
class TransitionModel(nn.Module):
|
||||
def __init__(self, state_size, hidden_size, action_size, history_size):
|
||||
super().__init__()
|
||||
|
||||
self.state_size = state_size
|
||||
self.hidden_size = hidden_size
|
||||
self.action_size = action_size
|
||||
self.history_size = history_size
|
||||
self.act_fn = nn.ELU()
|
||||
|
||||
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
|
||||
self.history_cell = nn.GRUCell(hidden_size, history_size)
|
||||
self.fc_state_mu = nn.Linear(history_size + hidden_size, state_size)
|
||||
self.fc_state_sigma = nn.Linear(history_size + hidden_size, state_size)
|
||||
|
||||
self.batch_norm = nn.BatchNorm1d(hidden_size)
|
||||
self.batch_norm2 = nn.BatchNorm1d(state_size)
|
||||
|
||||
self.min_sigma = 1e-4
|
||||
self.max_sigma = 1e0
|
||||
|
||||
def init_states(self, batch_size, device):
|
||||
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
|
||||
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
|
||||
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
|
||||
|
||||
def get_dist(self, mean, std):
|
||||
distribution = torch.distributions.Normal(mean, std)
|
||||
distribution = torch.distributions.independent.Independent(distribution, 1)
|
||||
return distribution
|
||||
|
||||
def stack_states(self, states, dim=0):
|
||||
s = dict(
|
||||
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
||||
std = torch.stack([state['std'] for state in states], dim=dim),
|
||||
sample = torch.stack([state['sample'] for state in states], dim=dim),
|
||||
history = torch.stack([state['history'] for state in states], dim=dim),)
|
||||
if 'distribution' in states:
|
||||
dist = dict(distribution = [state['distribution'] for state in states])
|
||||
s.update(dist)
|
||||
return s
|
||||
|
||||
def seq_to_batch(self, state, name):
|
||||
return dict(
|
||||
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
|
||||
|
||||
def transition_step(self, prev_state, prev_action, prev_hist, prev_not_done):
|
||||
prev_state = prev_state.detach() * prev_not_done
|
||||
prev_hist = prev_hist * prev_not_done
|
||||
|
||||
state_action_enc = self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))
|
||||
state_action_enc = self.act_fn(self.batch_norm(state_action_enc))
|
||||
|
||||
current_hist = self.history_cell(state_action_enc, prev_hist)
|
||||
state_mu = self.act_fn(self.fc_state_mu(torch.cat([state_action_enc, prev_hist], dim=-1)))
|
||||
state_sigma = F.softplus(self.fc_state_sigma(torch.cat([state_action_enc, prev_hist], dim=-1)))
|
||||
sample_state = state_mu + torch.randn_like(state_mu) * state_sigma
|
||||
|
||||
state_enc = {"mean": state_mu, "std": state_sigma, "sample": sample_state, "history": current_hist}
|
||||
return state_enc
|
||||
|
||||
def observe_step(self, prev_state, prev_action, prev_history):
|
||||
state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
|
||||
current_history = self.history_cell(state_action_enc, prev_history)
|
||||
state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([state_action_enc, prev_history], dim=-1))))
|
||||
state_sigma = F.softplus(self.fc_state_sigma(torch.cat([state_action_enc, prev_history], dim=-1)))
|
||||
|
||||
sample_state = state_mu + torch.randn_like(state_mu) * state_sigma
|
||||
state_enc = {"mean": state_mu, "std": state_sigma, "sample": sample_state, "history": current_history}
|
||||
return state_enc
|
||||
|
||||
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
|
||||
observed_rollout = []
|
||||
for i in range(rollout_states.shape[0]):
|
||||
rollout_states_ = rollout_states[i]
|
||||
rollout_actions_ = rollout_actions[i]
|
||||
init_history_ = nonterms[i] * init_history
|
||||
state_enc = self.observe_step(rollout_states_, rollout_actions_, init_history_)
|
||||
init_history = state_enc["history"]
|
||||
observed_rollout.append(state_enc)
|
||||
observed_rollout = self.stack_states(observed_rollout, dim=0)
|
||||
return observed_rollout
|
||||
|
||||
def reparemeterize(self, mean, std):
|
||||
eps = torch.randn_like(mean)
|
||||
return mean + eps * std
|
||||
|
||||
|
||||
def club_loss(x_samples, x_mu, x_logvar, y_samples):
|
||||
sample_size = x_samples.shape[0]
|
||||
random_index = torch.randperm(sample_size).long()
|
||||
|
||||
positive = -(x_mu - y_samples)**2 / x_logvar.exp()
|
||||
negative = - (x_mu - y_samples[random_index])**2 / x_logvar.exp()
|
||||
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
|
||||
return upper_bound/2.
|
||||
|
||||
_AVAILABLE_ENCODERS = {'pixel': PixelEncoder, 'identity': IdentityEncoder}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user