Adding encoder

This commit is contained in:
Vedant Dave 2023-05-22 14:08:02 +02:00
parent 3dc9818eaa
commit 99558ce92b

View File

@ -1,6 +1,5 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F
def tie_weights(src, trg): def tie_weights(src, trg):
@ -11,6 +10,85 @@ def tie_weights(src, trg):
OUT_DIM = {2: 39, 4: 35, 6: 31} OUT_DIM = {2: 39, 4: 35, 6: 31}
'''
class PixelEncoder(nn.Module):
"""Convolutional encoder of pixels observations."""
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32):
super().__init__()
assert len(obs_shape) == 3
self.feature_dim = feature_dim
self.num_layers = num_layers
self.convs = nn.ModuleList(
[nn.Conv2d(obs_shape[0], num_filters, 3, stride=2)]
)
for i in range(num_layers - 1):
self.convs.append(nn.Conv2d(num_filters, num_filters, 3, stride=1))
out_dim = OUT_DIM[num_layers]
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim)
self.ln = nn.LayerNorm(self.feature_dim)
self.outputs = dict()
def reparameterize(self, mu, logstd):
std = torch.exp(logstd)
eps = torch.randn_like(std)
return mu + eps * std
def forward_conv(self, obs):
obs = obs / 255.
self.outputs['obs'] = obs
conv = torch.relu(self.convs[0](obs))
self.outputs['conv1'] = conv
for i in range(1, self.num_layers):
conv = torch.relu(self.convs[i](conv))
self.outputs['conv%s' % (i + 1)] = conv
h = conv.view(conv.size(0), -1)
return h
def forward(self, obs, detach=False):
h = self.forward_conv(obs)
if detach:
h = h.detach()
h_fc = self.fc(h)
self.outputs['fc'] = h_fc
h_norm = self.ln(h_fc)
self.outputs['ln'] = h_norm
out = torch.tanh(h_norm)
self.outputs['tanh'] = out
return out
def copy_conv_weights_from(self, source):
"""Tie convolutional layers"""
# only tie conv layers
for i in range(self.num_layers):
tie_weights(src=source.convs[i], trg=self.convs[i])
def log(self, L, step, log_freq):
if step % log_freq != 0:
return
for k, v in self.outputs.items():
L.log_histogram('train_encoder/%s_hist' % k, v, step)
if len(v.shape) > 2:
L.log_image('train_encoder/%s_img' % k, v[0], step)
for i in range(self.num_layers):
L.log_param('train_encoder/conv%s' % (i + 1), self.convs[i], step)
L.log_param('train_encoder/fc', self.fc, step)
L.log_param('train_encoder/ln', self.ln, step)
'''
class PixelEncoder(nn.Module): class PixelEncoder(nn.Module):
"""Convolutional encoder of pixels observations.""" """Convolutional encoder of pixels observations."""
@ -65,17 +143,17 @@ class PixelEncoder(nn.Module):
h_norm = self.ln(h_fc) h_norm = self.ln(h_fc)
self.outputs['ln'] = h_norm self.outputs['ln'] = h_norm
h_tan = torch.tanh(h_norm) #out = torch.tanh(h_norm)
mu, logstd = torch.chunk(h_tan, 2, dim=-1) mu, logstd = torch.chunk(h_norm, 2, dim=-1)
logstd = torch.tanh(logstd)
self.outputs['mu'] = mu self.outputs['mu'] = mu
self.outputs['logstd'] = logstd self.outputs['logstd'] = logstd
self.outputs['std'] = logstd.exp()
std = torch.tanh(h_norm)
self.outputs['std'] = std
out = self.reparameterize(mu, logstd) out = self.reparameterize(mu, logstd)
return out, mu, logstd self.outputs['tanh'] = out
return out
def copy_conv_weights_from(self, source): def copy_conv_weights_from(self, source):
"""Tie convolutional layers""" """Tie convolutional layers"""
@ -97,7 +175,6 @@ class PixelEncoder(nn.Module):
L.log_param('train_encoder/fc', self.fc, step) L.log_param('train_encoder/fc', self.fc, step)
L.log_param('train_encoder/ln', self.ln, step) L.log_param('train_encoder/ln', self.ln, step)
class IdentityEncoder(nn.Module): class IdentityEncoder(nn.Module):
def __init__(self, obs_shape, feature_dim, num_layers, num_filters): def __init__(self, obs_shape, feature_dim, num_layers, num_filters):
super().__init__() super().__init__()
@ -115,103 +192,6 @@ class IdentityEncoder(nn.Module):
pass pass
class TransitionModel(nn.Module):
def __init__(self, state_size, hidden_size, action_size, history_size):
super().__init__()
self.state_size = state_size
self.hidden_size = hidden_size
self.action_size = action_size
self.history_size = history_size
self.act_fn = nn.ELU()
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
self.history_cell = nn.GRUCell(hidden_size, history_size)
self.fc_state_mu = nn.Linear(history_size + hidden_size, state_size)
self.fc_state_sigma = nn.Linear(history_size + hidden_size, state_size)
self.batch_norm = nn.BatchNorm1d(hidden_size)
self.batch_norm2 = nn.BatchNorm1d(state_size)
self.min_sigma = 1e-4
self.max_sigma = 1e0
def init_states(self, batch_size, device):
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
def get_dist(self, mean, std):
distribution = torch.distributions.Normal(mean, std)
distribution = torch.distributions.independent.Independent(distribution, 1)
return distribution
def stack_states(self, states, dim=0):
s = dict(
mean = torch.stack([state['mean'] for state in states], dim=dim),
std = torch.stack([state['std'] for state in states], dim=dim),
sample = torch.stack([state['sample'] for state in states], dim=dim),
history = torch.stack([state['history'] for state in states], dim=dim),)
if 'distribution' in states:
dist = dict(distribution = [state['distribution'] for state in states])
s.update(dist)
return s
def seq_to_batch(self, state, name):
return dict(
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
def transition_step(self, prev_state, prev_action, prev_hist, prev_not_done):
prev_state = prev_state.detach() * prev_not_done
prev_hist = prev_hist * prev_not_done
state_action_enc = self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))
state_action_enc = self.act_fn(self.batch_norm(state_action_enc))
current_hist = self.history_cell(state_action_enc, prev_hist)
state_mu = self.act_fn(self.fc_state_mu(torch.cat([state_action_enc, prev_hist], dim=-1)))
state_sigma = F.softplus(self.fc_state_sigma(torch.cat([state_action_enc, prev_hist], dim=-1)))
sample_state = state_mu + torch.randn_like(state_mu) * state_sigma
state_enc = {"mean": state_mu, "std": state_sigma, "sample": sample_state, "history": current_hist}
return state_enc
def observe_step(self, prev_state, prev_action, prev_history):
state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
current_history = self.history_cell(state_action_enc, prev_history)
state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([state_action_enc, prev_history], dim=-1))))
state_sigma = F.softplus(self.fc_state_sigma(torch.cat([state_action_enc, prev_history], dim=-1)))
sample_state = state_mu + torch.randn_like(state_mu) * state_sigma
state_enc = {"mean": state_mu, "std": state_sigma, "sample": sample_state, "history": current_history}
return state_enc
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
observed_rollout = []
for i in range(rollout_states.shape[0]):
rollout_states_ = rollout_states[i]
rollout_actions_ = rollout_actions[i]
init_history_ = nonterms[i] * init_history
state_enc = self.observe_step(rollout_states_, rollout_actions_, init_history_)
init_history = state_enc["history"]
observed_rollout.append(state_enc)
observed_rollout = self.stack_states(observed_rollout, dim=0)
return observed_rollout
def reparemeterize(self, mean, std):
eps = torch.randn_like(mean)
return mean + eps * std
def club_loss(x_samples, x_mu, x_logvar, y_samples):
sample_size = x_samples.shape[0]
random_index = torch.randperm(sample_size).long()
positive = -(x_mu - y_samples)**2 / x_logvar.exp()
negative = - (x_mu - y_samples[random_index])**2 / x_logvar.exp()
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
return upper_bound/2.
_AVAILABLE_ENCODERS = {'pixel': PixelEncoder, 'identity': IdentityEncoder} _AVAILABLE_ENCODERS = {'pixel': PixelEncoder, 'identity': IdentityEncoder}