Add graphs
This commit is contained in:
parent
82e8a23918
commit
8b79f49bb9
@ -1,10 +1,11 @@
|
|||||||
import os
|
import os
|
||||||
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import seaborn as sns
|
import seaborn as sns
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
|
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
|
||||||
|
|
||||||
|
"""
|
||||||
def tabulate_events(dpath):
|
def tabulate_events(dpath):
|
||||||
files = os.listdir(dpath)[0]
|
files = os.listdir(dpath)[0]
|
||||||
summary_iterators = [EventAccumulator(os.path.join(dpath, files)).Reload()]
|
summary_iterators = [EventAccumulator(os.path.join(dpath, files)).Reload()]
|
||||||
@ -43,7 +44,43 @@ for tag, values in events.items():
|
|||||||
|
|
||||||
df = pd.DataFrame(data)
|
df = pd.DataFrame(data)
|
||||||
print(df.head())
|
print(df.head())
|
||||||
|
exit()
|
||||||
|
|
||||||
plt.figure(figsize=(10,6))
|
plt.figure(figsize=(10,6))
|
||||||
sns.lineplot(data=df, x='step', y='value', hue='tag', ci='sd')
|
sns.lineplot(data=df, x='step', y='value', hue='tag', ci='sd')
|
||||||
plt.show()
|
plt.show()
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
from tensorboard.backend.event_processing import event_accumulator
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def data_from_tb(files):
|
||||||
|
all_steps, all_rewards = [], []
|
||||||
|
for file in files:
|
||||||
|
ea = event_accumulator.EventAccumulator(file, size_guidance={'scalars': 0})
|
||||||
|
ea.Reload()
|
||||||
|
|
||||||
|
episode_rewards = ea.Scalars('train/episode_reward')
|
||||||
|
steps = [event.step for event in episode_rewards][:990000]
|
||||||
|
rewards = [event.value for event in episode_rewards][:990000]
|
||||||
|
all_steps.append(steps)
|
||||||
|
all_rewards.append(rewards)
|
||||||
|
return all_steps, all_rewards
|
||||||
|
|
||||||
|
|
||||||
|
files = ['/home/vedant/pytorch_sac_ae/log/runs/tb_21_05_2023-13_19_36/events.out.tfevents.1684667976.cpswkstn6-nvidia4090.1749060.0',
|
||||||
|
'/home/vedant/pytorch_sac_ae/log/runs/tb_22_05_2023-09_56_30/events.out.tfevents.1684742190.cpswkstn6-nvidia4090.1976229.0']
|
||||||
|
|
||||||
|
all_steps, all_rewards = data_from_tb(files)
|
||||||
|
mean_rewards = np.mean(all_rewards, axis=0)
|
||||||
|
std_rewards = np.std(all_rewards, axis=0)
|
||||||
|
mean_steps = np.mean(all_steps, axis=0)
|
||||||
|
|
||||||
|
df = pd.DataFrame({'Steps': mean_steps,'Rewards': mean_rewards,'Standard Deviation': std_rewards})
|
||||||
|
|
||||||
|
sns.relplot(x='Steps', y='Rewards', kind='line', data=df, ci="sd")
|
||||||
|
plt.fill_between(df['Steps'], df['Rewards'] - df['Standard Deviation'], df['Rewards'] + df['Standard Deviation'], color='b', alpha=.1)
|
||||||
|
plt.title("Mean Rewards vs Steps with Standard Deviation")
|
||||||
|
plt.show()
|
Loading…
Reference in New Issue
Block a user