sac_ae_if/sac_ae.py

509 lines
17 KiB
Python
Raw Normal View History

2019-09-23 18:20:48 +00:00
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
import math
import utils
2023-05-24 17:43:02 +00:00
from encoder import make_encoder, club_loss, TransitionModel
2019-09-23 18:20:48 +00:00
from decoder import make_decoder
LOG_FREQ = 10000
def gaussian_logprob(noise, log_std):
"""Compute Gaussian log probability."""
residual = (-0.5 * noise.pow(2) - log_std).sum(-1, keepdim=True)
return residual - 0.5 * np.log(2 * np.pi) * noise.size(-1)
def squash(mu, pi, log_pi):
"""Apply squashing function.
See appendix C from https://arxiv.org/pdf/1812.05905.pdf.
"""
mu = torch.tanh(mu)
if pi is not None:
pi = torch.tanh(pi)
if log_pi is not None:
log_pi -= torch.log(F.relu(1 - pi.pow(2)) + 1e-6).sum(-1, keepdim=True)
return mu, pi, log_pi
def weight_init(m):
"""Custom weight init for Conv2D and Linear layers."""
if isinstance(m, nn.Linear):
nn.init.orthogonal_(m.weight.data)
m.bias.data.fill_(0.0)
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
# delta-orthogonal init from https://arxiv.org/pdf/1806.05393.pdf
assert m.weight.size(2) == m.weight.size(3)
m.weight.data.fill_(0.0)
m.bias.data.fill_(0.0)
mid = m.weight.size(2) // 2
gain = nn.init.calculate_gain('relu')
nn.init.orthogonal_(m.weight.data[:, :, mid, mid], gain)
class Actor(nn.Module):
"""MLP actor network."""
def __init__(
self, obs_shape, action_shape, hidden_dim, encoder_type,
2019-09-23 19:24:30 +00:00
encoder_feature_dim, log_std_min, log_std_max, num_layers, num_filters
2019-09-23 18:20:48 +00:00
):
super().__init__()
self.encoder = make_encoder(
encoder_type, obs_shape, encoder_feature_dim, num_layers,
2019-09-23 19:24:30 +00:00
num_filters
2019-09-23 18:20:48 +00:00
)
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.trunk = nn.Sequential(
nn.Linear(self.encoder.feature_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, 2 * action_shape[0])
)
self.outputs = dict()
self.apply(weight_init)
def forward(
self, obs, compute_pi=True, compute_log_pi=True, detach_encoder=False
):
2023-05-24 17:43:02 +00:00
obs,_,_ = self.encoder(obs, detach=detach_encoder)
2019-09-23 18:20:48 +00:00
mu, log_std = self.trunk(obs).chunk(2, dim=-1)
# constrain log_std inside [log_std_min, log_std_max]
2019-09-23 19:24:30 +00:00
log_std = torch.tanh(log_std)
2019-09-23 18:20:48 +00:00
log_std = self.log_std_min + 0.5 * (
self.log_std_max - self.log_std_min
) * (log_std + 1)
self.outputs['mu'] = mu
self.outputs['std'] = log_std.exp()
if compute_pi:
std = log_std.exp()
noise = torch.randn_like(mu)
pi = mu + noise * std
else:
pi = None
entropy = None
if compute_log_pi:
log_pi = gaussian_logprob(noise, log_std)
else:
log_pi = None
mu, pi, log_pi = squash(mu, pi, log_pi)
return mu, pi, log_pi, log_std
def log(self, L, step, log_freq=LOG_FREQ):
if step % log_freq != 0:
return
for k, v in self.outputs.items():
L.log_histogram('train_actor/%s_hist' % k, v, step)
L.log_param('train_actor/fc1', self.trunk[0], step)
L.log_param('train_actor/fc2', self.trunk[2], step)
L.log_param('train_actor/fc3', self.trunk[4], step)
class QFunction(nn.Module):
"""MLP for q-function."""
def __init__(self, obs_dim, action_dim, hidden_dim):
super().__init__()
self.trunk = nn.Sequential(
nn.Linear(obs_dim + action_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
def forward(self, obs, action):
assert obs.size(0) == action.size(0)
obs_action = torch.cat([obs, action], dim=1)
return self.trunk(obs_action)
class Critic(nn.Module):
"""Critic network, employes two q-functions."""
def __init__(
self, obs_shape, action_shape, hidden_dim, encoder_type,
2019-09-23 19:24:30 +00:00
encoder_feature_dim, num_layers, num_filters
2019-09-23 18:20:48 +00:00
):
super().__init__()
self.encoder = make_encoder(
encoder_type, obs_shape, encoder_feature_dim, num_layers,
2019-09-23 19:24:30 +00:00
num_filters
2019-09-23 18:20:48 +00:00
)
self.Q1 = QFunction(
self.encoder.feature_dim, action_shape[0], hidden_dim
)
self.Q2 = QFunction(
self.encoder.feature_dim, action_shape[0], hidden_dim
)
self.outputs = dict()
self.apply(weight_init)
def forward(self, obs, action, detach_encoder=False):
# detach_encoder allows to stop gradient propogation to encoder
2023-05-24 17:43:02 +00:00
obs,_,_ = self.encoder(obs, detach=detach_encoder)
2019-09-23 18:20:48 +00:00
q1 = self.Q1(obs, action)
q2 = self.Q2(obs, action)
self.outputs['q1'] = q1
self.outputs['q2'] = q2
return q1, q2
def log(self, L, step, log_freq=LOG_FREQ):
if step % log_freq != 0:
return
self.encoder.log(L, step, log_freq)
for k, v in self.outputs.items():
L.log_histogram('train_critic/%s_hist' % k, v, step)
for i in range(3):
L.log_param('train_critic/q1_fc%d' % i, self.Q1.trunk[i * 2], step)
L.log_param('train_critic/q2_fc%d' % i, self.Q2.trunk[i * 2], step)
2023-05-24 17:43:02 +00:00
class LBLoss(nn.Module):
def __init__(self, z_dim):
super(LBLoss, self).__init__()
self.z_dim = z_dim
self.W = nn.Parameter(torch.rand(z_dim, z_dim))
def compute_logits(self, z_a, z_pos):
"""
Uses logits trick for CURL:
- compute (B,B) matrix z_a (W z_pos.T)
- positives are all diagonal elements
- negatives are all other elements
- to compute loss use multiclass cross entropy with identity matrix for labels
"""
Wz = torch.matmul(self.W, z_pos.T) # (z_dim,B)
logits = torch.matmul(z_a, Wz) # (B,B)
logits = logits - torch.max(logits, 1)[0][:, None]
return logits
2019-09-23 18:20:48 +00:00
2019-09-23 18:38:55 +00:00
class SacAeAgent(object):
"""SAC+AE algorithm."""
2019-09-23 18:20:48 +00:00
def __init__(
self,
obs_shape,
action_shape,
device,
hidden_dim=256,
discount=0.99,
init_temperature=0.01,
alpha_lr=1e-3,
alpha_beta=0.9,
actor_lr=1e-3,
actor_beta=0.9,
actor_log_std_min=-10,
actor_log_std_max=2,
actor_update_freq=2,
critic_lr=1e-3,
critic_beta=0.9,
critic_tau=0.005,
critic_target_update_freq=2,
2019-09-23 18:38:55 +00:00
encoder_type='pixel',
2019-09-23 18:20:48 +00:00
encoder_feature_dim=50,
encoder_lr=1e-3,
encoder_tau=0.005,
2019-09-23 18:38:55 +00:00
decoder_type='pixel',
2019-09-23 18:20:48 +00:00
decoder_lr=1e-3,
decoder_update_freq=1,
decoder_latent_lambda=0.0,
decoder_weight_lambda=0.0,
num_layers=4,
2019-09-23 18:38:55 +00:00
num_filters=32
2019-09-23 18:20:48 +00:00
):
self.device = device
self.discount = discount
self.critic_tau = critic_tau
self.encoder_tau = encoder_tau
self.actor_update_freq = actor_update_freq
self.critic_target_update_freq = critic_target_update_freq
self.decoder_update_freq = decoder_update_freq
self.decoder_latent_lambda = decoder_latent_lambda
self.actor = Actor(
obs_shape, action_shape, hidden_dim, encoder_type,
encoder_feature_dim, actor_log_std_min, actor_log_std_max,
2019-09-23 19:24:30 +00:00
num_layers, num_filters
2019-09-23 18:20:48 +00:00
).to(device)
self.critic = Critic(
obs_shape, action_shape, hidden_dim, encoder_type,
2019-09-23 19:24:30 +00:00
encoder_feature_dim, num_layers, num_filters
2019-09-23 18:20:48 +00:00
).to(device)
self.critic_target = Critic(
obs_shape, action_shape, hidden_dim, encoder_type,
2019-09-23 19:24:30 +00:00
encoder_feature_dim, num_layers, num_filters
2019-09-23 18:20:48 +00:00
).to(device)
2023-05-24 17:43:02 +00:00
self.transition_model = TransitionModel(
encoder_feature_dim, hidden_dim, action_shape[0], history_size=256
).to(device)
2019-09-23 18:20:48 +00:00
2023-05-24 17:43:02 +00:00
self.lb_loss = LBLoss(encoder_feature_dim).to(device)
2019-09-23 18:20:48 +00:00
self.critic_target.load_state_dict(self.critic.state_dict())
# tie encoders between actor and critic
self.actor.encoder.copy_conv_weights_from(self.critic.encoder)
self.log_alpha = torch.tensor(np.log(init_temperature)).to(device)
self.log_alpha.requires_grad = True
# set target entropy to -|A|
self.target_entropy = -np.prod(action_shape)
self.decoder = None
if decoder_type != 'identity':
# create decoder
self.decoder = make_decoder(
2019-09-23 19:24:30 +00:00
decoder_type, obs_shape, encoder_feature_dim, num_layers,
2019-09-23 18:20:48 +00:00
num_filters
).to(device)
self.decoder.apply(weight_init)
# optimizer for critic encoder for reconstruction loss
self.encoder_optimizer = torch.optim.Adam(
2023-05-24 17:43:02 +00:00
list(self.critic.encoder.parameters()) +
list(self.transition_model.parameters()), #+
#list(self.lb_loss.parameters()),
lr=encoder_lr
2019-09-23 18:20:48 +00:00
)
# optimizer for decoder
self.decoder_optimizer = torch.optim.Adam(
self.decoder.parameters(),
lr=decoder_lr,
weight_decay=decoder_weight_lambda
)
# optimizers
self.actor_optimizer = torch.optim.Adam(
self.actor.parameters(), lr=actor_lr, betas=(actor_beta, 0.999)
)
self.critic_optimizer = torch.optim.Adam(
self.critic.parameters(), lr=critic_lr, betas=(critic_beta, 0.999)
)
self.log_alpha_optimizer = torch.optim.Adam(
[self.log_alpha], lr=alpha_lr, betas=(alpha_beta, 0.999)
)
self.train()
self.critic_target.train()
def train(self, training=True):
self.training = training
self.actor.train(training)
self.critic.train(training)
if self.decoder is not None:
self.decoder.train(training)
@property
def alpha(self):
return self.log_alpha.exp()
def select_action(self, obs):
with torch.no_grad():
obs = torch.FloatTensor(obs).to(self.device)
obs = obs.unsqueeze(0)
mu, _, _, _ = self.actor(
obs, compute_pi=False, compute_log_pi=False
)
return mu.cpu().data.numpy().flatten()
def sample_action(self, obs):
with torch.no_grad():
obs = torch.FloatTensor(obs).to(self.device)
obs = obs.unsqueeze(0)
mu, pi, _, _ = self.actor(obs, compute_log_pi=False)
return pi.cpu().data.numpy().flatten()
def update_critic(self, obs, action, reward, next_obs, not_done, L, step):
with torch.no_grad():
_, policy_action, log_pi, _ = self.actor(next_obs)
target_Q1, target_Q2 = self.critic_target(next_obs, policy_action)
target_V = torch.min(target_Q1,
target_Q2) - self.alpha.detach() * log_pi
target_Q = reward + (not_done * self.discount * target_V)
# get current Q estimates
current_Q1, current_Q2 = self.critic(obs, action)
critic_loss = F.mse_loss(current_Q1,
target_Q) + F.mse_loss(current_Q2, target_Q)
L.log('train_critic/loss', critic_loss, step)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
self.critic.log(L, step)
def update_actor_and_alpha(self, obs, L, step):
# detach encoder, so we don't update it with the actor loss
_, pi, log_pi, log_std = self.actor(obs, detach_encoder=True)
actor_Q1, actor_Q2 = self.critic(obs, pi, detach_encoder=True)
actor_Q = torch.min(actor_Q1, actor_Q2)
actor_loss = (self.alpha.detach() * log_pi - actor_Q).mean()
L.log('train_actor/loss', actor_loss, step)
L.log('train_actor/target_entropy', self.target_entropy, step)
entropy = 0.5 * log_std.shape[1] * (1.0 + np.log(2 * np.pi)
) + log_std.sum(dim=-1)
L.log('train_actor/entropy', entropy.mean(), step)
# optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
self.actor.log(L, step)
self.log_alpha_optimizer.zero_grad()
alpha_loss = (self.alpha *
(-log_pi - self.target_entropy).detach()).mean()
L.log('train_alpha/loss', alpha_loss, step)
L.log('train_alpha/value', self.alpha, step)
alpha_loss.backward()
self.log_alpha_optimizer.step()
2023-05-24 17:43:02 +00:00
def update_decoder(self, obs, target_obs, L, step, obs_list, action_list, reward_list, next_obs_list, not_done_list):
with torch.no_grad():
hist = torch.zeros((target_obs.shape[0], 256)).to(self.device)
for i in range(len(obs_list)-1):
state, _, _ = self.critic.encoder(obs_list[i])
action = action_list[i]
not_done = not_done_list[i]
state_enc = self.transition_model(state, action, hist, not_done)
hist = state_enc["history"]
h, h_mu, h_logvar = self.critic.encoder(obs_list[-1])
h_clone = h.clone()
action = action_list[-1]
not_done = not_done_list[-1]
state_enc = self.transition_model(h, action, hist, not_done)
mean, std = state_enc["mean"], state_enc["logvar"].exp()
h_dist_enc = torch.distributions.Normal(h_mu, h_logvar.exp())
h_dist_pred = torch.distributions.Normal(mean, std)
enc_loss = torch.distributions.kl.kl_divergence(h_dist_enc, h_dist_pred).mean() * 1e-2
"""
with torch.no_grad():
z_pos, _ , _ = self.critic_target.encoder(next_obs_list[-1])
z_out = self.critic_target.encoder.combine(torch.concat((z_pos, action), dim=-1))
logits = self.lb_loss.compute_logits(h, z_out)
labels = torch.arange(logits.shape[0]).long().to(self.device)
lb_loss = nn.CrossEntropyLoss()(logits, labels) * 1e-2
"""
#with torch.no_grad():
# z_pos, _ , _ = self.critic.encoder(next_obs_list[-1])
#ub_loss = club_loss(state_enc["sample"], mean, state_enc["logvar"], h) * 1e-1
2019-09-23 18:20:48 +00:00
if target_obs.dim() == 4:
# preprocess images to be in [-0.5, 0.5] range
target_obs = utils.preprocess_obs(target_obs)
2023-05-24 17:43:02 +00:00
rec_obs = self.decoder(h_clone)
2019-09-23 18:20:48 +00:00
rec_loss = F.mse_loss(target_obs, rec_obs)
2023-05-24 17:43:02 +00:00
ub_loss = torch.tensor(0.0)
#enc_loss = torch.tensor(0.0)
lb_loss = torch.tensor(0.0)
#rec_loss = torch.tensor(0.0)
loss = rec_loss + enc_loss + lb_loss + ub_loss
2019-09-23 18:20:48 +00:00
self.encoder_optimizer.zero_grad()
self.decoder_optimizer.zero_grad()
loss.backward()
self.encoder_optimizer.step()
self.decoder_optimizer.step()
2023-05-24 17:43:02 +00:00
#enc_loss = torch.tensor(0.0)
2019-09-23 18:20:48 +00:00
L.log('train_ae/ae_loss', loss, step)
2023-05-24 17:43:02 +00:00
L.log('train_ae/rec_loss', rec_loss, step)
L.log('train_ae/enc_loss', enc_loss, step)
L.log('train_ae/lb_loss', lb_loss, step)
L.log('train_ae/ub_loss', ub_loss, step)
2019-09-23 18:20:48 +00:00
self.decoder.log(L, step, log_freq=LOG_FREQ)
def update(self, replay_buffer, L, step):
2023-05-24 17:43:02 +00:00
obs_list, action_list, reward_list, next_obs_list, not_done_list = replay_buffer.sample()
obs, action, reward, next_obs, not_done = obs_list[-1], action_list[-1], reward_list[-1], next_obs_list[-1], not_done_list[-1]
2019-09-23 18:20:48 +00:00
L.log('train/batch_reward', reward.mean(), step)
self.update_critic(obs, action, reward, next_obs, not_done, L, step)
if step % self.actor_update_freq == 0:
self.update_actor_and_alpha(obs, L, step)
if step % self.critic_target_update_freq == 0:
utils.soft_update_params(
self.critic.Q1, self.critic_target.Q1, self.critic_tau
)
utils.soft_update_params(
self.critic.Q2, self.critic_target.Q2, self.critic_tau
)
utils.soft_update_params(
self.critic.encoder, self.critic_target.encoder,
self.encoder_tau
)
2019-09-24 01:22:49 +00:00
if self.decoder is not None and step % self.decoder_update_freq == 0:
2023-05-24 17:43:02 +00:00
self.update_decoder(obs, obs, L, step, obs_list, action_list, reward_list, next_obs_list, not_done_list)
2019-09-23 18:20:48 +00:00
def save(self, model_dir, step):
torch.save(
self.actor.state_dict(), '%s/actor_%s.pt' % (model_dir, step)
)
torch.save(
self.critic.state_dict(), '%s/critic_%s.pt' % (model_dir, step)
)
if self.decoder is not None:
torch.save(
self.decoder.state_dict(),
'%s/decoder_%s.pt' % (model_dir, step)
)
def load(self, model_dir, step):
self.actor.load_state_dict(
torch.load('%s/actor_%s.pt' % (model_dir, step))
)
self.critic.load_state_dict(
torch.load('%s/critic_%s.pt' % (model_dir, step))
)
if self.decoder is not None:
self.decoder.load_state_dict(
torch.load('%s/decoder_%s.pt' % (model_dir, step))
)