56 lines
1.5 KiB
Python
56 lines
1.5 KiB
Python
from __future__ import print_function
|
|
|
|
import torch
|
|
import numpy as np
|
|
|
|
|
|
def adjust_learning_rate(epoch, opt, optimizer):
|
|
"""Sets the learning rate to the initial LR decayed by 0.2 every steep step"""
|
|
steps = np.sum(epoch > np.asarray(opt.lr_decay_epochs))
|
|
if steps > 0:
|
|
new_lr = opt.learning_rate * (opt.lr_decay_rate ** steps)
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = new_lr
|
|
|
|
|
|
class AverageMeter(object):
|
|
"""Computes and stores the average and current value"""
|
|
def __init__(self):
|
|
self.val = 0
|
|
self.avg = 0
|
|
self.sum = 0
|
|
self.count = 0
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.val = 0
|
|
self.avg = 0
|
|
self.sum = 0
|
|
self.count = 0
|
|
|
|
def update(self, val, n=1):
|
|
self.val = val
|
|
self.sum += val * n
|
|
self.count += n
|
|
self.avg = self.sum / self.count
|
|
|
|
|
|
def accuracy(output, target, topk=(1,)):
|
|
"""Computes the accuracy over the k top predictions for the specified values of k"""
|
|
with torch.no_grad():
|
|
maxk = max(topk)
|
|
batch_size = target.size(0)
|
|
|
|
_, pred = output.topk(maxk, 1, True, True)
|
|
pred = pred.t()
|
|
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
|
|
|
res = []
|
|
for k in topk:
|
|
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
|
|
res.append(correct_k.mul_(100.0 / batch_size))
|
|
return res
|
|
|
|
|
|
if __name__ == '__main__':
|
|
meter = AverageMeter() |