This commit is contained in:
Vedant Dave 2023-09-12 13:16:03 +00:00
parent 6a11c9ce61
commit b3660fe103

View File

@ -1,118 +1,131 @@
import os import os
import wandb
import pickle import pickle
import argparse
from PIL import Image from PIL import Image
from train_mm_moco import evaluate_and_plot, compute_tsne, MultiModalMoCo
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from util import *
from generate_dataset import TouchFolderLabel
from linear_classifier import LinearClassifierResNet
from train_mm_moco import evaluate_and_plot, compute_tsne, MultiModalMoCo
import torch import torch
import torch.optim as optim import torch.optim as optim
from torchvision import transforms from torchvision import transforms
from torch.utils.data import random_split from torch.utils.data import random_split
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader, Dataset from torch.utils.data import DataLoader, Dataset
from torch.utils.tensorboard import SummaryWriter
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
writer = SummaryWriter('runs/mmssl')
# Custom dataset def parse_option():
class CustomMultiModalDataset(Dataset): parser = argparse.ArgumentParser('argument for training')
def __init__(self, vision_folder, tactile_folder, transform=None):
self.vision_folder = vision_folder
self.tactile_folder = tactile_folder
self.transform = transform
self.vision_files = sorted(os.listdir(vision_folder)) parser.add_argument('--print_freq', type=int, default=10, help='print frequency')
self.tactile_files = sorted(os.listdir(tactile_folder)) parser.add_argument('--save_freq', type=int, default=10, help='save frequency')
parser.add_argument('--batch_size', type=int, default=256, help='batch_size')
parser.add_argument('--num_workers', type=int, default=18, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=61, help='number of training epochs')
parser.add_argument('--num_layers', type=int, default=5, help='number of layers in resnet')
def __len__(self): # optimization
return len(self.vision_files) parser.add_argument('--learning_rate', type=float, default=0.03, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='120,160', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
def __getitem__(self, idx): # resume path
vision_path = os.path.join(self.vision_folder, self.vision_files[idx]) parser.add_argument('--resume', default='', type=str, metavar='PATH',
tactile_path = os.path.join(self.tactile_folder, self.tactile_files[idx]) help='path to latest checkpoint (default: none)')
vision_image = Image.open(vision_path).convert("RGB") # model definition
tactile_image = Image.open(tactile_path).convert("RGB") parser.add_argument('--model', type=str, default='alexnet', choices=[
'resnet50t1', 'resnet101t1', 'resnet18t1',
'resnet50t2', 'resnet101t2', 'resnet18t2',
'resnet50t3', 'resnet101t3', 'resnet18t3'])
parser.add_argument('--softmax', action='store_true', help='using softmax contrastive loss rather than NCE')
parser.add_argument('--feat_dim', type=int, default=128, help='dim of feat for inner product')
if self.transform: # dataset
vision_image = self.transform(vision_image) parser.add_argument('--dataset', type=str, default='touch_and_go', choices=['touch_and_go', 'pretrain', 'touch_rough', 'touch_hard'])
tactile_image = self.transform(tactile_image)
return vision_image, tactile_image # specify folder
parser.add_argument('--data_folder', type=str, default="dataset/", help='path to dataset')
parser.add_argument('--data_loader', type=str, default='touch_and_go', choices=['touch_and_go'])
parser.add_argument('--model_path', type=str, default="ckpt/mmssl", help='path to save model')
# Initialize augmentation # add new views
simple_transforms = transforms.Compose([ parser.add_argument('--view', type=str, default='Touch', choices=['Touch'])
transforms.Resize((275, 275)),
#transforms.CenterCrop(500),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
data_transforms = transforms.Compose([ # mixed precision setting
transforms.RandomApply([transforms.RandomRotation(150)], p=0.50), parser.add_argument('--amp', action='store_true', help='using mixed precision')
transforms.RandomResizedCrop(224, scale=(0.2, 1.0)), parser.add_argument('--opt_level', type=str, default='O2', choices=['O1', 'O2'])
transforms.RandomApply([transforms.RandomHorizontalFlip()], p=0.50),
#transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
transforms.RandomGrayscale(p=0.2),
#transforms.RandomApply([transforms.GaussianBlur(3, sigma=(0.1, 2.0))], p=0.5),
])
# Initialize dataset and dataloader # data crop threshold
vision_folder = "/home/vedant/Downloads/ssvtp_data/images_rgb" parser.add_argument('--crop_low', type=float, default=0.2, help='low area in crop')
tactile_folder = "/home/vedant/Downloads/ssvtp_data/images_tac"
dataset = CustomMultiModalDataset(vision_folder, tactile_folder, transform=simple_transforms)
preload = True # data amount
if not preload: parser.add_argument('--data_amount', type=int, default=100, help='how much data used')
# Split the dataset into 80-20 parser.add_argument('--comment', type=str, default='', help='comment')
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = random_split(dataset, [train_size, test_size])
# Get the indices of the training and test sets # wandb
train_indices = train_dataset.indices parser.add_argument('--wandb', action='store_true', help='Enable wandb')
test_indices = test_dataset.indices parser.add_argument('--wandb_name', type=str, default=None, help='username of wandb')
# Save these indices to disk opt = parser.parse_args()
with open('indices/train_indices.pkl', 'wb') as f:
pickle.dump(train_indices, f)
with open('indices/test_indices.pkl', 'wb') as f:
pickle.dump(test_indices, f)
# Initialize dataloaders for train and test if (opt.data_folder is None) or (opt.model_path is None):
train_dataloader = DataLoader(train_dataset, batch_size=96, shuffle=True) raise ValueError('one or more of the folders is None: data_folder | model_path')
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
else: return opt
# Load the indices from disk
with open('indices/train_indices.pkl', 'rb') as f:
train_indices = pickle.load(f)
with open('indices/test_indices.pkl', 'rb') as f:
test_indices = pickle.load(f)
# Create subset datasets and DataLoaders
train_subset = torch.utils.data.Subset(dataset, train_indices)
test_subset = torch.utils.data.Subset(dataset, test_indices)
train_dataloader = DataLoader(train_subset, batch_size=96, shuffle=True) def logging(epoch, idx, train_loader_len, loss, acc1, acc5, losses, top1, top5, pretrain, train=True):
test_dataloader = DataLoader(test_subset, batch_size=32, shuffle=False) if pretrain:
print('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss:.4f}'.format(
epoch, idx, train_loader_len, loss=loss))
wandb.log({"training loss": loss}, step=epoch * train_loader_len + idx)
else:
print('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, idx, train_loader_len, loss=losses, top1=top1))
if train:
wandb.log({"training loss": loss,
"training accuracy": acc1[0],
"training top5 accuracy": acc5[0]},
step=epoch)
else:
wandb.log({"validation loss": loss,
"validation accuracy": acc1[0],
"validation top5 accuracy": acc5[0]},
step=epoch)
# Initialize model def train(epoch, train_loader, model, optimizer, classifier=None, criterion=None, task=None, scheduler=None):
model = MultiModalMoCo(writer, K=4096, m=0.99, T=0.07).to(device) # Logging setup
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# Initialize optimizer # Training loop
vision_module = list(model.vision_base_q.parameters()) + list(model.vision_head_intra_q.parameters()) + list(model.vision_head_inter_q.parameters()) for idx, values in enumerate(train_loader):
tactile_module = list(model.tactile_base_q.parameters()) + list(model.tactile_head_intra_q.parameters()) + list(model.tactile_head_inter_q.parameters()) if classifier is None:
optim_vision = optim.Adam(vision_module, lr=0.1) inputs, _, index = values
optim_tactile = optim.Adam(tactile_module, lr=0.1) model.train()
else:
inputs, target = values
classifier = classifier.to(device)
criterion = criterion.to(device)
model.eval()
classifier.train()
# Training loop x_vision, x_tactile = inputs[:,:3,:,:], inputs[:,3:,:,:]
n_epochs = 500 # Number of epochs
for epoch in range(n_epochs):
for i, (x_vision, x_tactile) in enumerate(train_dataloader):
# Augment images # Augment images
x_vision_q = data_transforms(x_vision).to(device) x_vision_q = data_transforms(x_vision).to(device)
@ -122,22 +135,240 @@ for epoch in range(n_epochs):
x_tactile_k = data_transforms(x_tactile).to(device) x_tactile_k = data_transforms(x_tactile).to(device)
# Forward pass to get the loss # Forward pass to get the loss
loss = model(x_vision_q, x_vision_k, x_tactile_q, x_tactile_k, epoch, i, len(train_dataloader)) if classifier is None:
loss = model(x_vision_q, x_vision_k, x_tactile_q, x_tactile_k, epoch, idx, len(train_loader))
# Backward pass and optimization # Backward pass and optimization
optim_vision.zero_grad() optimizer.zero_grad()
optim_tactile.zero_grad() loss.backward()
loss.backward() optimizer.step()
optim_vision.step() #scheduler.step()
optim_tactile.step()
# Logging # For logging
if i % 10 == 0: acc1, acc5, losses, top1, top5 = 0, 0, 0, 0, 0
print(f"Epoch [{epoch+1}/{n_epochs}], Step [{i+1}/{len(train_dataloader)}], Loss: {loss.item():.4f}") else:
writer.add_scalar('training loss', loss.item(), epoch * len(train_dataloader) + i) feat = model.tactile_base_q(x_tactile_q)
if args.num_layers == 3:
feat = model.phi_vision_q(feat)
# Evaluate and plot output = classifier(feat)
#compute_tsne(model, test_dataloader, writer, epoch) target = target.cuda()
#evaluate_and_plot(model, test_dataloader, epoch, writer, device) loss = criterion(output, target)
if epoch % 10 == 0:
torch.save(model.state_dict(), 'models/model.pth') acc1, acc5 = accuracy(output, target, topk=(1, 1))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1[0], inputs.size(0))
top5.update(acc5[0], inputs.size(0))
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
#scheduler.step()
if idx % 100 == 0 and idx!=0:
logging(epoch, idx, len(train_loader), loss.item(), acc1, acc5, losses, top1, top5, pretrain=(classifier is None))
def val(epoch, test_loader, model, optimizer, classifier=None, criterion=None, task=None):
# Logging setup
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# Training loop
for idx, values in enumerate(test_loader):
if classifier is None:
inputs, _, index = values
model.eval()
else:
inputs, target = values
classifier = classifier.to(device)
criterion = criterion.to(device)
model.eval()
classifier.eval()
x_vision, x_tactile = inputs[:,:3,:,:], inputs[:,3:,:,:]
# Augment images
x_vision_q = data_transforms(x_vision).to(device)
x_vision_k = data_transforms(x_vision).to(device)
x_tactile_q = data_transforms(x_tactile).to(device)
x_tactile_k = data_transforms(x_tactile).to(device)
# Forward pass to get the loss
if classifier is None:
loss = model(x_vision_q, x_vision_k, x_tactile_q, x_tactile_k, epoch, idx, len(test_loader))
# For logging
acc1, acc5, losses, top1, top5 = 0, 0, 0, 0, 0
else:
feat = model.tactile_base_q(x_tactile_q)
if args.num_layers == 3:
feat = model.phi_vision_q(feat)
output = classifier(feat)
target = target.cuda()
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 1))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1[0], inputs.size(0))
top5.update(acc5[0], inputs.size(0))
if len(test_loader) > 100:
if idx % 100 == 0 and idx!=0:
logging(epoch, idx, len(test_loader), loss.item(), acc1, acc5, losses, top1, top5, pretrain=(classifier is None), train=False)
wandb.log({"val accuracy": top1.avg.item()}, step=epoch)
print(' * Acc@1 {top1.avg:.3f}'.format(top1=top1))
else:
if idx % 30 == 0 and idx!=0:
logging(epoch, idx, len(test_loader), loss.item(), acc1, acc5, losses, top1, top5, pretrain=(classifier is None), train=False)
#wandb.log({"val accuracy": top1.avg.item()}, step=epoch)
print(' * Acc@1 {top1.avg:.3f}'.format(top1=top1))
if classifier is None:
return 0, 0, 0
return top1.avg, top5.avg, losses.avg
if __name__ == "__main__":
# Best Accuracy
global best_acc1
best_acc1 = 0
# Parse arguments
args = parse_option()
# Initialize wandb
wandb.login()
#wandb.init(project='tac_tag')
# Initialize augmentation
simple_transforms = transforms.Compose([
transforms.Resize((256, 256)),
#transforms.CenterCrop(500),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
data_transforms = transforms.Compose([
#transforms.RandomApply([transforms.RandomRotation(150)], p=0.50),
transforms.RandomResizedCrop(224, scale=(0.2, 1.0)),
transforms.RandomApply([transforms.RandomHorizontalFlip()], p=0.50),
#transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
transforms.RandomGrayscale(p=0.2),
#transforms.RandomApply([transforms.GaussianBlur(3, sigma=(0.1, 2.0))], p=0.5),
])
# Initialize dataset and dataloader
data_folder = args.data_folder
train_sampler = None
if args.dataset == 'touch_and_go' or args.dataset == 'touch_rough' or args.dataset == 'touch_hard' or args.dataset == 'pretrain':
if args.dataset == 'touch_hard':
print('hard')
train_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='train', label='hard')
val_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='test', label='hard')
n_labels = 2
elif args.dataset == 'touch_rough':
print('rough')
train_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='train', label='rough')
val_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='test', label='rough')
n_labels = 2
elif args.dataset == 'touch_and_go':
train_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='train')
val_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='test')
n_labels = 20
elif args.dataset == 'pretrain':
train_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='pretrain')
val_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='pretrain')
else:
raise NotImplementedError('dataset not supported {}'.format(args.dataset))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.num_workers, pin_memory=True, sampler=train_sampler)
test_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.num_workers, pin_memory=True, sampler=train_sampler)
# num of samples
n_data = len(train_dataset)
print('number of samples: {}'.format(n_data))
# Initialize model
nn_model = 'resnet18'
model = MultiModalMoCo(m=0.99, T=0.07, nn_model=nn_model).to(device)
# Initialize task
if args.dataset == 'pretrain':
task = "pretrain"
elif args.dataset == 'touch_and_go':
task = "material"
elif args.dataset == 'touch_rough':
task = "rough"
elif args.dataset == 'touch_hard':
task = "hard"
if task == "pretrain":
# Initialize optimizer
modules = list(model.vision_base_q.parameters()) + list(model.tactile_base_q.parameters()) + list(model.phi_vision_q.parameters()) + list(model.phi_tactile_q.parameters())
optimizer = optim.Adam(modules, lr=0.03)
classifier, criterion = None, None
else:
# Initialize training
#model.load_state_dict(torch.load('/home/cpsadmin/TAG/models/model_tag_238.pth'))
model.load_state_dict(torch.load('/media/vedant/cpsDataStorageWK/Vedant/Tactile/TAG/models/model_tag_pretrain_220.pth')['model'])
classifier = LinearClassifierResNet(layer=args.num_layers, n_label=n_labels)
optimizer = optim.Adam(classifier.parameters(), lr=1e-4)
criterion = torch.nn.CrossEntropyLoss()
# Initialize wandb
wandb.init(project=task+"_mm")
# Train
for epoch in range(args.epochs):
train(epoch, train_loader, model, optimizer, classifier=classifier, criterion=criterion, task=task)
if task == "pretrain":
pass
else:
print("==> testing...")
test_acc, test_acc5, test_loss = val(epoch, test_loader, model, optimizer, classifier=classifier, criterion=criterion, task=task)
# save the best model
print('test_acc: {}'.format(test_acc))
print('best_acc1: {}'.format(best_acc1))
if test_acc > best_acc1:
best_acc1 = test_acc
state = {
'opt': args,
'epoch': epoch,
'classifier': classifier.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}
save_name = f'models/model_tag_{task}_best.pth'
print('saving best model!')
torch.save(state, save_name)
if epoch % 10 == 0:
print('==> Saving...')
classifier_ = classifier if task != "pretrain" else optimizer
optimizer_ = optimizer
best_acc1 = best_acc1 if task != "pretrain" else 0
state = {
'opt': args,
'epoch': epoch,
'model': model.state_dict(),
'classifier': classifier_.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer_.state_dict(),
}
torch.save(state, f'models/model_tag_{task}_{epoch}.pth')
wandb.save('models/model_{}.pth'.format(epoch))