This commit is contained in:
Vedant Dave 2023-09-12 13:16:37 +00:00
parent b3660fe103
commit 61b34dad11

View File

@ -4,36 +4,43 @@ from torchvision import models # For using the ResNet-50 model
import torch.nn.functional as F
import timm
import wandb
import random
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
class MultiModalMoCo(nn.Module):
def __init__(self, writer, K=4096, m=0.99, T=1.0):
def __init__(self, m=0.99, T=1.0, nn_model=None):
super(MultiModalMoCo, self).__init__()
self.writer = writer
self.K = K
self.m = m
self.T = T
self.nn_model = nn_model
self.intra_dim = 128
self.inter_dim = 128
# Initialize the queue
self.queue = torch.zeros((self.K, self.intra_dim), dtype=torch.float).cuda()
self.queue_ptr = 0
def create_mlp_head(output_dim):
return nn.Sequential(
nn.Linear(2048, 2048),
nn.ReLU(),
nn.Linear(2048, output_dim)
)
if self.nn_model == 'resnet18':
return nn.Sequential(
nn.Linear(512, 2048),
nn.ReLU(),
nn.Linear(2048, output_dim)
)
elif self.nn_model == 'resnet50':
return nn.Sequential(
nn.Linear(2048, 2048),
nn.ReLU(),
nn.Linear(2048, output_dim)
)
def create_resnet_encoder():
resnet = models.resnet50(weights='ResNet50_Weights.IMAGENET1K_V1')
if self.nn_model == 'resnet18':
resnet = models.resnet18(weights='ResNet18_Weights.IMAGENET1K_V1')
elif self.nn_model == 'resnet50':
resnet = models.resnet50(weights='ResNet50_Weights.IMAGENET1K_V1')
#resnet = models.regnet_x_800mf(weights='RegNet_X_800MF_Weights')
features = list(resnet.children())[:-2]
features.append(nn.AdaptiveAvgPool2d((1, 1)))
@ -42,25 +49,21 @@ class MultiModalMoCo(nn.Module):
# Vision encoders
self.vision_base_q = create_resnet_encoder()
self.vision_head_intra_q = create_mlp_head(self.intra_dim)
self.vision_head_inter_q = create_mlp_head(self.inter_dim)
self.vision_base_k = create_resnet_encoder()
self.vision_head_intra_k = create_mlp_head(self.intra_dim)
self.vision_head_inter_k = create_mlp_head(self.inter_dim)
# Tactile encoders
self.tactile_base_q = create_resnet_encoder()
self.tactile_head_intra_q = create_mlp_head(self.intra_dim)
self.tactile_head_inter_q = create_mlp_head(self.inter_dim)
self.tactile_base_k = create_resnet_encoder()
self.tactile_head_intra_k = create_mlp_head(self.intra_dim)
self.tactile_head_inter_k = create_mlp_head(self.inter_dim)
# Projection heads
self.phi_vision_q = create_mlp_head(self.intra_dim)
self.phi_vision_k = create_mlp_head(self.intra_dim)
self.phi_tactile_q = create_mlp_head(self.intra_dim)
self.phi_tactile_k = create_mlp_head(self.intra_dim)
# Initialize key encoders with query encoder weights
self._momentum_update_key_encoder(self.vision_base_q, self.vision_base_k)
self._momentum_update_key_encoder(self.tactile_base_q, self.tactile_base_k)
self._momentum_update_key_encoder(self.phi_vision_q, self.phi_vision_k)
self._momentum_update_key_encoder(self.phi_tactile_q, self.phi_tactile_k)
@torch.no_grad()
def concat_all_gather(self,tensor):
@ -84,41 +87,45 @@ class MultiModalMoCo(nn.Module):
def forward(self, x_vision_q, x_vision_k, x_tactile_q, x_tactile_k, epoch, i, len_train_dataloader):
vision_base_q = self.vision_base_q(x_vision_q)
vision_queries_intra = self.vision_head_intra_q(vision_base_q)
vision_queries_inter = self.vision_head_inter_q(vision_base_q)
q_vv = self.phi_vision_q(vision_base_q)
q_vt = self.phi_tactile_q(vision_base_q)
with torch.no_grad():
self._momentum_update_key_encoder(self.vision_base_q, self.vision_base_k)
vision_base_k = self.vision_base_k(x_vision_k)
vision_keys_intra = self.vision_head_intra_k(vision_base_k)
vision_keys_inter = self.vision_head_inter_k(vision_base_k)
vision_base_k = self.vision_base_k(x_vision_k)
k_vv = self.phi_vision_k(vision_base_k)
k_tv = self.phi_tactile_k(vision_base_k)
tactile_base_q = self.tactile_base_q(x_tactile_q)
tactile_queries_intra = self.tactile_head_intra_q(tactile_base_q)
tactile_queries_inter = self.tactile_head_inter_q(tactile_base_q)
q_tv = self.phi_vision_q(tactile_base_q)
q_tt = self.phi_tactile_q(tactile_base_q)
with torch.no_grad():
self._momentum_update_key_encoder(self.tactile_base_q, self.tactile_base_k)
tactile_base_k = self.tactile_base_k(x_tactile_k)
tactile_keys_intra = self.tactile_head_intra_k(tactile_base_k)
tactile_keys_inter = self.tactile_head_inter_k(tactile_base_k)
tactile_base_k = self.tactile_base_k(x_tactile_k)
k_vt = self.phi_vision_k(tactile_base_k)
k_tt = self.phi_tactile_k(tactile_base_k)
# Update key encoders
self._momentum_update_key_encoder(self.vision_base_q, self.vision_base_k)
self._momentum_update_key_encoder(self.tactile_base_q, self.tactile_base_k)
self._momentum_update_key_encoder(self.phi_vision_q, self.phi_vision_k)
self._momentum_update_key_encoder(self.phi_tactile_q, self.phi_tactile_k)
# Compute the contrastive loss for each pair of queries and keys
vision_loss_intra = self.moco_contrastive_loss(vision_queries_intra, vision_keys_intra)
tactile_loss_intra = self.moco_contrastive_loss(tactile_queries_intra, tactile_keys_intra)
vision_tactile_inter = self.moco_contrastive_loss(vision_queries_inter, tactile_keys_inter)
tactile_vision_inter = self.moco_contrastive_loss(tactile_queries_inter, vision_keys_inter)
vision_vision_intra = self.moco_contrastive_loss(q_vv, k_vv)
tactile_tactile_intra = self.moco_contrastive_loss(q_tt, k_tt)
tactile_vision_inter = self.moco_contrastive_loss(q_vt, k_vt)
vision_tactile_inter = self.moco_contrastive_loss(q_tv, k_tv)
# Combine losses (you can use different strategies to combine these losses)
weight_inter = 1
combined_loss = vision_loss_intra + tactile_loss_intra + (vision_tactile_inter + tactile_vision_inter) * weight_inter
combined_loss = vision_vision_intra + tactile_tactile_intra + (tactile_vision_inter + vision_tactile_inter) * weight_inter
if len_train_dataloader != 0:
self.writer.add_scalar('module loss/vision intra loss', vision_loss_intra.item(), epoch * len_train_dataloader + i)
self.writer.add_scalar('module loss/tactile intra loss', tactile_loss_intra.item(), epoch * len_train_dataloader + i)
self.writer.add_scalar('module loss/vision tactile inter loss', vision_tactile_inter.item() * weight_inter, epoch * len_train_dataloader + i)
self.writer.add_scalar('module loss/tactile vision inter loss', tactile_vision_inter.item() * weight_inter, epoch * len_train_dataloader + i)
wandb.log({
'module loss/vision intra loss': vision_vision_intra.item(),
'module loss/tactile intra loss': tactile_tactile_intra.item(),
'module loss/vision tactile inter loss': vision_tactile_inter.item() * weight_inter,
'module loss/tactile vision inter loss': tactile_vision_inter.item() * weight_inter
}, step=epoch * len_train_dataloader + i)
return combined_loss
@ -127,7 +134,7 @@ def denormalize(tensor, mean, std):
t.mul_(s).add_(m)
return tensor
def evaluate_and_plot(model, test_dataloader, epoch, writer, device):
def evaluate_and_plot(model, test_dataloader, epoch, device):
model.eval()
with torch.no_grad():
@ -150,14 +157,16 @@ def evaluate_and_plot(model, test_dataloader, epoch, writer, device):
x_tactile_test_denorm = x_tactile_test_denorm.cpu().numpy()
x_tactile_test_denorm = np.clip(x_tactile_test_denorm, 0, 1)
writer.add_images('Vision_Images', x_vision_test_denorm, epoch)
writer.add_images('Tactile_Images', x_tactile_test_denorm, epoch)
writer.add_scalar('testing loss', test_loss.item(), epoch * len(test_dataloader))
x_vision_test_denorm = x_vision_test_denorm.transpose(0, 2, 3, 1)
x_tactile_test_denorm = x_tactile_test_denorm.transpose(0, 2, 3, 1)
wandb.log({
"Vision_Images": [wandb.Image(img_tensor) for img_tensor in x_vision_test_denorm],
"Tactile_Images": [wandb.Image(img_tensor) for img_tensor in x_tactile_test_denorm]
}, commit=False)
wandb.log({"testing loss": test_loss.item()}, step=epoch * len(test_dataloader))
print(f"Test Loss: {test_loss.item():.4f}")
def compute_tsne(model, test_dataloader, writer, epoch):
def compute_tsne(model, test_dataloader, epoch):
with torch.no_grad():
test_data_list = list(test_dataloader)
x_vision_test, x_tactile_test = random.choice(test_data_list)
@ -190,8 +199,7 @@ def compute_tsne(model, test_dataloader, writer, epoch):
image = Image.open('temp_figure.png')
image = np.array(image) # Convert image to a NumPy array
image = image[:, :, :3].transpose(2, 0, 1) # Extract RGB channels and change format to CHW
writer.add_image('t-SNE', image, global_step=epoch)
wandb.log({"t-SNE": wandb.Image(image)}, commit=False)
def find_knn(query_point, data_points, k=5):
# Calculate the Euclidean distances