191 lines
8.9 KiB
Python
191 lines
8.9 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torchvision import models # For using the ResNet-50 model
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
import random
|
||
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
import matplotlib.pyplot as plt
|
||
|
from sklearn.manifold import TSNE
|
||
|
|
||
|
class MultiModalMoCo(nn.Module):
|
||
|
def __init__(self, writer, K=4096, m=0.99, T=0.07):
|
||
|
super(MultiModalMoCo, self).__init__()
|
||
|
|
||
|
self.writer = writer
|
||
|
self.K = K
|
||
|
self.m = m
|
||
|
self.T = T
|
||
|
|
||
|
self.intra_dim = 64
|
||
|
self.inter_dim = 64
|
||
|
|
||
|
self.W_vision_intra = nn.Parameter(torch.randn(self.intra_dim, self.intra_dim))
|
||
|
self.W_tactile_intra = nn.Parameter(torch.randn(self.intra_dim, self.intra_dim))
|
||
|
self.W_vision_inter = nn.Parameter(torch.randn(self.inter_dim, self.inter_dim))
|
||
|
self.W_tactile_inter = nn.Parameter(torch.randn(self.inter_dim, self.inter_dim))
|
||
|
|
||
|
def create_mlp_head(output_dim):
|
||
|
return nn.Sequential(
|
||
|
nn.Linear(2048, 2048),
|
||
|
nn.ReLU(),
|
||
|
nn.Linear(2048, output_dim)
|
||
|
)
|
||
|
|
||
|
def create_resnet_encoder():
|
||
|
resnet = models.resnet50(weights='ResNet50_Weights.IMAGENET1K_V1')
|
||
|
features = list(resnet.children())[:-2]
|
||
|
features.append(nn.AdaptiveAvgPool2d((1, 1)))
|
||
|
features.append(nn.Flatten())
|
||
|
return nn.Sequential(*features)
|
||
|
|
||
|
# Vision encoders
|
||
|
self.vision_base_q = create_resnet_encoder()
|
||
|
self.vision_head_intra_q = create_mlp_head(self.intra_dim)
|
||
|
self.vision_head_inter_q = create_mlp_head(self.inter_dim)
|
||
|
|
||
|
self.vision_base_k = create_resnet_encoder()
|
||
|
self.vision_head_intra_k = create_mlp_head(self.intra_dim)
|
||
|
self.vision_head_inter_k = create_mlp_head(self.inter_dim)
|
||
|
|
||
|
# Tactile encoders
|
||
|
self.tactile_base_q = create_resnet_encoder()
|
||
|
self.tactile_head_intra_q = create_mlp_head(self.intra_dim)
|
||
|
self.tactile_head_inter_q = create_mlp_head(self.inter_dim)
|
||
|
|
||
|
self.tactile_base_k = create_resnet_encoder()
|
||
|
self.tactile_head_intra_k = create_mlp_head(self.intra_dim)
|
||
|
self.tactile_head_inter_k = create_mlp_head(self.inter_dim)
|
||
|
|
||
|
# Initialize key encoders with query encoder weights
|
||
|
self._momentum_update_key_encoder(self.vision_base_q, self.vision_base_k)
|
||
|
self._momentum_update_key_encoder(self.tactile_base_q, self.tactile_base_k)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def _momentum_update_key_encoder(self, base_q, base_k):
|
||
|
for param_q, param_k in zip(base_q.parameters(), base_k.parameters()):
|
||
|
param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)
|
||
|
|
||
|
def compute_logits(self, z_a, z_pos, W):
|
||
|
Wz = torch.matmul(W, z_pos.T) # (z_dim, B)
|
||
|
logits = torch.matmul(z_a, Wz) # (B, B)
|
||
|
logits = logits - torch.max(logits, 1)[0][:, None]
|
||
|
return logits
|
||
|
|
||
|
def forward(self, x_vision_q, x_vision_k, x_tactile_q, x_tactile_k, epoch, i, len_train_dataloader):
|
||
|
vision_base_q = self.vision_base_q(x_vision_q)
|
||
|
vision_queries_intra = self.vision_head_intra_q(vision_base_q)
|
||
|
vision_queries_inter = self.vision_head_inter_q(vision_base_q)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
self._momentum_update_key_encoder(self.vision_base_q, self.vision_base_k)
|
||
|
vision_base_k = self.vision_base_k(x_vision_k)
|
||
|
vision_keys_intra = self.vision_head_intra_k(vision_base_k)
|
||
|
vision_keys_inter = self.vision_head_inter_k(vision_base_k)
|
||
|
|
||
|
tactile_base_q = self.tactile_base_q(x_tactile_q)
|
||
|
tactile_queries_intra = self.tactile_head_intra_q(tactile_base_q)
|
||
|
tactile_queries_inter = self.tactile_head_inter_q(tactile_base_q)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
self._momentum_update_key_encoder(self.tactile_base_q, self.tactile_base_k)
|
||
|
tactile_base_k = self.tactile_base_k(x_tactile_k)
|
||
|
tactile_keys_intra = self.tactile_head_intra_k(tactile_base_k)
|
||
|
tactile_keys_inter = self.tactile_head_inter_k(tactile_base_k)
|
||
|
|
||
|
# Compute the contrastive loss for each pair of queries and keys
|
||
|
vision_loss_intra = nn.CrossEntropyLoss()(self.compute_logits(vision_queries_intra, vision_keys_intra, self.W_vision_intra),
|
||
|
torch.arange(x_vision_q.size(0)).to(x_vision_q.device))
|
||
|
|
||
|
tactile_loss_intra = nn.CrossEntropyLoss()(self.compute_logits(tactile_queries_intra, tactile_keys_intra, self.W_tactile_intra),
|
||
|
torch.arange(x_tactile_q.size(0)).to(x_tactile_q.device))
|
||
|
|
||
|
vision_tactile_inter = nn.CrossEntropyLoss()(self.compute_logits(vision_queries_inter, tactile_keys_inter, self.W_vision_inter),
|
||
|
torch.arange(x_vision_q.size(0)).to(x_vision_q.device))
|
||
|
|
||
|
tactile_vision_inter = nn.CrossEntropyLoss()(self.compute_logits(tactile_queries_inter, vision_keys_inter, self.W_tactile_inter),
|
||
|
torch.arange(x_tactile_q.size(0)).to(x_tactile_q.device))
|
||
|
|
||
|
# Combine losses (you can use different strategies to combine these losses)
|
||
|
weight_inter = 0.1
|
||
|
combined_loss = vision_loss_intra + tactile_loss_intra + (vision_tactile_inter + tactile_vision_inter) * weight_inter
|
||
|
|
||
|
if len_train_dataloader != 0:
|
||
|
self.writer.add_scalar('module loss/vision intra loss', vision_loss_intra.item(), epoch * len_train_dataloader + i)
|
||
|
self.writer.add_scalar('module loss/tactile intra loss', tactile_loss_intra.item(), epoch * len_train_dataloader + i)
|
||
|
self.writer.add_scalar('module loss/vision tactile inter loss', vision_tactile_inter.item() * weight_inter, epoch * len_train_dataloader + i)
|
||
|
self.writer.add_scalar('module loss/tactile vision inter loss', tactile_vision_inter.item() * weight_inter, epoch * len_train_dataloader + i)
|
||
|
|
||
|
return combined_loss
|
||
|
|
||
|
|
||
|
def denormalize(tensor, mean, std):
|
||
|
for t, m, s in zip(tensor, mean, std):
|
||
|
t.mul_(s).add_(m)
|
||
|
return tensor
|
||
|
|
||
|
def evaluate_and_plot(model, test_dataloader, epoch, writer, device):
|
||
|
model.eval()
|
||
|
|
||
|
with torch.no_grad():
|
||
|
test_data_list = list(test_dataloader)
|
||
|
x_vision_test, x_tactile_test = random.choice(test_data_list)
|
||
|
random_indices = random.sample(range(x_vision_test.shape[0]), 4)
|
||
|
x_vision_test = x_vision_test[random_indices].to(device)
|
||
|
x_tactile_test = x_tactile_test[random_indices].to(device)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
test_loss = model(x_vision_test, x_vision_test, x_tactile_test, x_tactile_test, epoch, 0, 0)
|
||
|
|
||
|
# Denormalize vision images
|
||
|
x_vision_test_denorm = denormalize(x_vision_test.clone(), [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||
|
x_vision_test_denorm = x_vision_test_denorm.cpu().numpy()
|
||
|
x_vision_test_denorm = np.clip(x_vision_test_denorm, 0, 1)
|
||
|
|
||
|
# Denormalize tactile images
|
||
|
x_tactile_test_denorm = denormalize(x_tactile_test.clone(), [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||
|
x_tactile_test_denorm = x_tactile_test_denorm.cpu().numpy()
|
||
|
x_tactile_test_denorm = np.clip(x_tactile_test_denorm, 0, 1)
|
||
|
|
||
|
writer.add_images('Vision_Images', x_vision_test_denorm, epoch)
|
||
|
writer.add_images('Tactile_Images', x_tactile_test_denorm, epoch)
|
||
|
|
||
|
writer.add_scalar('testing loss', test_loss.item(), epoch * len(test_dataloader))
|
||
|
print(f"Test Loss: {test_loss.item():.4f}")
|
||
|
|
||
|
|
||
|
def compute_tsne(model, test_dataloader, writer, epoch):
|
||
|
with torch.no_grad():
|
||
|
test_data_list = list(test_dataloader)
|
||
|
x_vision_test, x_tactile_test = random.choice(test_data_list)
|
||
|
random_indices = random.sample(range(x_vision_test.shape[0]), 10)
|
||
|
x_vision_test = x_vision_test[random_indices].to('cuda')
|
||
|
x_tactile_test = x_tactile_test[random_indices].to('cuda')
|
||
|
vision_base_q = model.vision_base_q(x_vision_test)
|
||
|
tactile_base_q = model.tactile_base_q(x_tactile_test)
|
||
|
|
||
|
vision_base_q = vision_base_q.cpu().numpy()
|
||
|
tactile_base_q = tactile_base_q.cpu().numpy()
|
||
|
|
||
|
tsne = TSNE(n_components=2, random_state=0, perplexity=5)
|
||
|
|
||
|
# Create pairs of corresponding representations and labels
|
||
|
num_samples = min(vision_base_q.shape[0], tactile_base_q.shape[0])
|
||
|
data = np.concatenate((vision_base_q[:num_samples], tactile_base_q[:num_samples]), axis=0)
|
||
|
labels = np.arange(1, num_samples+1).repeat(2)
|
||
|
|
||
|
tsne_data = tsne.fit_transform(data)
|
||
|
|
||
|
fig = plt.figure(figsize=(10, 10))
|
||
|
|
||
|
for i, (x, y) in enumerate(tsne_data):
|
||
|
plt.scatter(x, y, color='blue')
|
||
|
plt.text(x, y, f"{labels[i]}", fontsize=12, ha='center', va='bottom')
|
||
|
plt.savefig('temp_figure.png')
|
||
|
plt.close(fig)
|
||
|
|
||
|
image = Image.open('temp_figure.png')
|
||
|
image = np.array(image) # Convert image to a NumPy array
|
||
|
image = image[:, :, :3].transpose(2, 0, 1) # Extract RGB channels and change format to CHW
|
||
|
writer.add_image('t-SNE', image, global_step=epoch)
|