TVSSL/tac_ssl_tag.py

374 lines
15 KiB
Python
Raw Normal View History

2023-09-12 13:32:15 +00:00
import os
import wandb
import pickle
import argparse
from PIL import Image
import matplotlib.pyplot as plt
from util import *
from generate_dataset import TouchFolderLabel
from linear_classifier import LinearClassifierResNet
from train_mm_moco import evaluate_and_plot, compute_tsne, MultiModalMoCo
import torch
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import random_split
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader, Dataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=10, help='print frequency')
parser.add_argument('--save_freq', type=int, default=10, help='save frequency')
parser.add_argument('--batch_size', type=int, default=256, help='batch_size')
parser.add_argument('--num_workers', type=int, default=18, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=61, help='number of training epochs')
parser.add_argument('--num_layers', type=int, default=5, help='number of layers in resnet')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.03, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='120,160', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# resume path
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# model definition
parser.add_argument('--model', type=str, default='alexnet', choices=[
'resnet50t1', 'resnet101t1', 'resnet18t1',
'resnet50t2', 'resnet101t2', 'resnet18t2',
'resnet50t3', 'resnet101t3', 'resnet18t3'])
parser.add_argument('--softmax', action='store_true', help='using softmax contrastive loss rather than NCE')
parser.add_argument('--feat_dim', type=int, default=128, help='dim of feat for inner product')
# dataset
parser.add_argument('--dataset', type=str, default='touch_and_go', choices=['touch_and_go', 'pretrain', 'touch_rough', 'touch_hard'])
# specify folder
parser.add_argument('--data_folder', type=str, default="dataset/", help='path to dataset')
parser.add_argument('--data_loader', type=str, default='touch_and_go', choices=['touch_and_go'])
parser.add_argument('--model_path', type=str, default="ckpt/mmssl", help='path to save model')
# add new views
parser.add_argument('--view', type=str, default='Touch', choices=['Touch'])
# mixed precision setting
parser.add_argument('--amp', action='store_true', help='using mixed precision')
parser.add_argument('--opt_level', type=str, default='O2', choices=['O1', 'O2'])
# data crop threshold
parser.add_argument('--crop_low', type=float, default=0.2, help='low area in crop')
# data amount
parser.add_argument('--data_amount', type=int, default=100, help='how much data used')
parser.add_argument('--comment', type=str, default='', help='comment')
# wandb
parser.add_argument('--wandb', action='store_true', help='Enable wandb')
parser.add_argument('--wandb_name', type=str, default=None, help='username of wandb')
opt = parser.parse_args()
if (opt.data_folder is None) or (opt.model_path is None):
raise ValueError('one or more of the folders is None: data_folder | model_path')
return opt
def logging(epoch, idx, train_loader_len, loss, acc1, acc5, losses, top1, top5, pretrain, train=True):
if pretrain:
print('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss:.4f}'.format(
epoch, idx, train_loader_len, loss=loss))
wandb.log({"training loss": loss}, step=epoch * train_loader_len + idx)
else:
print('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, idx, train_loader_len, loss=losses, top1=top1))
if train:
wandb.log({"training loss": loss,
"training accuracy": acc1[0],
"training top5 accuracy": acc5[0]},
step=epoch)
else:
wandb.log({"validation loss": loss,
"validation accuracy": acc1[0],
"validation top5 accuracy": acc5[0]},
step=epoch)
def train(epoch, train_loader, model, optimizer, classifier=None, criterion=None, task=None, scheduler=None):
# Logging setup
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# Training loop
for idx, values in enumerate(train_loader):
if classifier is None:
inputs, _, index = values
model.train()
else:
inputs, target = values
classifier = classifier.to(device)
criterion = criterion.to(device)
model.eval()
classifier.train()
x_vision, x_tactile = inputs[:,:3,:,:], inputs[:,3:,:,:]
# Augment images
x_vision_q = data_transforms(x_vision).to(device)
x_vision_k = data_transforms(x_vision).to(device)
x_tactile_q = data_transforms(x_tactile).to(device)
x_tactile_k = data_transforms(x_tactile).to(device)
# Forward pass to get the loss
if classifier is None:
loss = model(x_vision_q, x_vision_k, x_tactile_q, x_tactile_k, epoch, idx, len(train_loader))
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
#scheduler.step()
# For logging
acc1, acc5, losses, top1, top5 = 0, 0, 0, 0, 0
else:
feat = model.tactile_base_q(x_tactile_q)
if args.num_layers == 3:
feat = model.phi_vision_q(feat)
output = classifier(feat)
target = target.cuda()
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 1))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1[0], inputs.size(0))
top5.update(acc5[0], inputs.size(0))
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
#scheduler.step()
if idx % 100 == 0 and idx!=0:
logging(epoch, idx, len(train_loader), loss.item(), acc1, acc5, losses, top1, top5, pretrain=(classifier is None))
def val(epoch, test_loader, model, optimizer, classifier=None, criterion=None, task=None):
# Logging setup
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# Training loop
for idx, values in enumerate(test_loader):
if classifier is None:
inputs, _, index = values
model.eval()
else:
inputs, target = values
classifier = classifier.to(device)
criterion = criterion.to(device)
model.eval()
classifier.eval()
x_vision, x_tactile = inputs[:,:3,:,:], inputs[:,3:,:,:]
# Augment images
x_vision_q = data_transforms(x_vision).to(device)
x_vision_k = data_transforms(x_vision).to(device)
x_tactile_q = data_transforms(x_tactile).to(device)
x_tactile_k = data_transforms(x_tactile).to(device)
# Forward pass to get the loss
if classifier is None:
loss = model(x_vision_q, x_vision_k, x_tactile_q, x_tactile_k, epoch, idx, len(test_loader))
# For logging
acc1, acc5, losses, top1, top5 = 0, 0, 0, 0, 0
else:
feat = model.tactile_base_q(x_tactile_q)
if args.num_layers == 3:
feat = model.phi_vision_q(feat)
output = classifier(feat)
target = target.cuda()
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 1))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1[0], inputs.size(0))
top5.update(acc5[0], inputs.size(0))
if len(test_loader) > 100:
if idx % 100 == 0 and idx!=0:
logging(epoch, idx, len(test_loader), loss.item(), acc1, acc5, losses, top1, top5, pretrain=(classifier is None), train=False)
wandb.log({"val accuracy": top1.avg.item()}, step=epoch)
print(' * Acc@1 {top1.avg:.3f}'.format(top1=top1))
else:
if idx % 30 == 0 and idx!=0:
logging(epoch, idx, len(test_loader), loss.item(), acc1, acc5, losses, top1, top5, pretrain=(classifier is None), train=False)
#wandb.log({"val accuracy": top1.avg.item()}, step=epoch)
print(' * Acc@1 {top1.avg:.3f}'.format(top1=top1))
if classifier is None:
return 0, 0, 0
return top1.avg, top5.avg, losses.avg
if __name__ == "__main__":
# Best Accuracy
global best_acc1
best_acc1 = 0
# Parse arguments
args = parse_option()
# Initialize wandb
wandb.login()
#wandb.init(project='tac_tag')
# Initialize augmentation
simple_transforms = transforms.Compose([
transforms.Resize((256, 256)),
#transforms.CenterCrop(500),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
data_transforms = transforms.Compose([
#transforms.RandomApply([transforms.RandomRotation(150)], p=0.50),
transforms.RandomResizedCrop(224, scale=(0.2, 1.0)),
transforms.RandomApply([transforms.RandomHorizontalFlip()], p=0.50),
#transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
transforms.RandomGrayscale(p=0.2),
#transforms.RandomApply([transforms.GaussianBlur(3, sigma=(0.1, 2.0))], p=0.5),
])
# Initialize dataset and dataloader
data_folder = args.data_folder
train_sampler = None
if args.dataset == 'touch_and_go' or args.dataset == 'touch_rough' or args.dataset == 'touch_hard' or args.dataset == 'pretrain':
if args.dataset == 'touch_hard':
print('hard')
train_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='train', label='hard')
val_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='test', label='hard')
n_labels = 2
elif args.dataset == 'touch_rough':
print('rough')
train_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='train', label='rough')
val_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='test', label='rough')
n_labels = 2
elif args.dataset == 'touch_and_go':
train_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='train')
val_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='test')
n_labels = 20
elif args.dataset == 'pretrain':
train_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='pretrain')
val_dataset = TouchFolderLabel(data_folder, transform=simple_transforms, mode='pretrain')
else:
raise NotImplementedError('dataset not supported {}'.format(args.dataset))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.num_workers, pin_memory=True, sampler=train_sampler)
test_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.num_workers, pin_memory=True, sampler=train_sampler)
# num of samples
n_data = len(train_dataset)
print('number of samples: {}'.format(n_data))
# Initialize model
nn_model = 'resnet18'
model = MultiModalMoCo(m=0.99, T=0.07, nn_model=nn_model).to(device)
# Initialize task
if args.dataset == 'pretrain':
task = "pretrain"
elif args.dataset == 'touch_and_go':
task = "material"
elif args.dataset == 'touch_rough':
task = "rough"
elif args.dataset == 'touch_hard':
task = "hard"
if task == "pretrain":
# Initialize optimizer
modules = list(model.vision_base_q.parameters()) + list(model.tactile_base_q.parameters()) + list(model.phi_vision_q.parameters()) + list(model.phi_tactile_q.parameters())
optimizer = optim.Adam(modules, lr=0.03)
classifier, criterion = None, None
else:
# Initialize training
#model.load_state_dict(torch.load('/home/cpsadmin/TAG/models/model_tag_238.pth'))
model.load_state_dict(torch.load('/media/vedant/cpsDataStorageWK/Vedant/Tactile/TAG/models/model_tag_pretrain_220.pth')['model'])
classifier = LinearClassifierResNet(layer=args.num_layers, n_label=n_labels)
optimizer = optim.Adam(classifier.parameters(), lr=1e-4)
criterion = torch.nn.CrossEntropyLoss()
# Initialize wandb
wandb.init(project=task+"_mm")
# Train
for epoch in range(args.epochs):
train(epoch, train_loader, model, optimizer, classifier=classifier, criterion=criterion, task=task)
if task == "pretrain":
pass
else:
print("==> testing...")
test_acc, test_acc5, test_loss = val(epoch, test_loader, model, optimizer, classifier=classifier, criterion=criterion, task=task)
# save the best model
print('test_acc: {}'.format(test_acc))
print('best_acc1: {}'.format(best_acc1))
if test_acc > best_acc1:
best_acc1 = test_acc
state = {
'opt': args,
'epoch': epoch,
'classifier': classifier.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}
save_name = f'models/model_tag_{task}_best.pth'
print('saving best model!')
torch.save(state, save_name)
if epoch % 10 == 0:
print('==> Saving...')
classifier_ = classifier if task != "pretrain" else optimizer
optimizer_ = optimizer
best_acc1 = best_acc1 if task != "pretrain" else 0
state = {
'opt': args,
'epoch': epoch,
'model': model.state_dict(),
'classifier': classifier_.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer_.state_dict(),
}
torch.save(state, f'models/model_tag_{task}_{epoch}.pth')
wandb.save('models/model_{}.pth'.format(epoch))