TVSSL/tac_ssl_test.py

144 lines
5.6 KiB
Python
Raw Permalink Normal View History

2023-08-31 10:42:13 +00:00
import torch
from torchvision import transforms
from torch.utils.data import random_split
from torch.utils.data import DataLoader, Dataset
import os
import random
import pickle
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from train_mm_moco import MultiModalMoCo
2023-09-02 15:26:10 +00:00
from sklearn.neighbors import NearestNeighbors, KNeighborsClassifier
2023-08-31 10:42:13 +00:00
def denormalize(tensor, mean, std):
for t, m, s in zip(tensor, mean, std):
t.mul_(s).add_(m)
return tensor
def compute_tsne(model, test_dataloader):
with torch.no_grad():
test_data_list = list(test_dataloader)
x_vision_test, x_tactile_test = random.choice(test_data_list)
random_indices = random.sample(range(x_vision_test.shape[0]), 100)
x_vision_test = x_vision_test[random_indices].to('cuda')
x_tactile_test = x_tactile_test[random_indices].to('cuda')
vision_base_q = model.vision_base_q(x_vision_test)
tactile_base_q = model.tactile_base_q(x_tactile_test)
x_vision_test = denormalize(x_vision_test, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
x_tactile_test = denormalize(x_tactile_test, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
vision_base_q = vision_base_q.cpu().numpy()
tactile_base_q = tactile_base_q.cpu().numpy()
2023-09-02 15:26:10 +00:00
combined_data = np.concatenate((vision_base_q, tactile_base_q), axis=0)
2023-08-31 10:42:13 +00:00
2023-09-02 15:26:10 +00:00
nn_all = find_knn(combined_data, np.asarray(range(1,201)), n=8)
plot_images_by_labels(np.concatenate((x_vision_test.cpu().numpy(), x_tactile_test.cpu().numpy()), axis=0), nn_all[0])
2023-08-31 10:42:13 +00:00
image_data = np.concatenate((x_vision_test.cpu().numpy(), x_tactile_test.cpu().numpy()), axis=0)
tsne = TSNE(n_components=2, random_state=0, perplexity=75,n_iter=50000)
# Create pairs of corresponding representations and labels
num_samples = min(vision_base_q.shape[0], tactile_base_q.shape[0])
data = np.concatenate((vision_base_q[:num_samples], tactile_base_q[:num_samples]), axis=0)
labels = np.arange(1, 2*(num_samples)+1)
tsne_data = tsne.fit_transform(data)
nn_all = find_knn(tsne_data, labels)
plot_images_by_labels(image_data, nn_all[0])
fig = plt.figure(figsize=(10, 10))
for i, (x, y) in enumerate(tsne_data):
2023-09-02 15:26:10 +00:00
plt.scatter(x, y, color='blue' if labels[i] <= 100 else 'red')
#plt.text(x, y, f"{labels[i]}", fontsize=12, ha='center', va='bottom')
2023-08-31 10:42:13 +00:00
plt.savefig('temp_figure.png')
plt.close(fig)
image = Image.open('temp_figure.png')
image = np.array(image) # Convert image to a NumPy array
image_rgb = image[:, :, :3] # Extract RGB channels and change format to CHW
plt.imshow(image_rgb)
plt.title('t-SNE plot')
plt.axis('off')
plt.show()
2023-09-02 15:26:10 +00:00
def find_knn(tsne_data, labels, n=6):
neigh = KNeighborsClassifier(n_neighbors=n, weights='distance')
X_train = tsne_data[1:,:]
y_train = labels[1:]
neigh.fit(X_train, y_train)
_, indices = neigh.kneighbors(tsne_data[0,:].reshape(1, -1))
return labels[indices]
2023-08-31 10:42:13 +00:00
def plot_images_by_labels(image_data, labels_to_plot):
2023-09-02 15:26:10 +00:00
fig, axes = plt.subplots(2, len(labels_to_plot)//2, figsize=(15, 5))
axes = axes.flatten()
2023-08-31 10:42:13 +00:00
for i, label in enumerate(labels_to_plot):
2023-09-02 15:26:10 +00:00
img = image_data[label]
normalized_image_data = (img - np.min(img)) / (np.max(img) - np.min(img))
axes[i].imshow(normalized_image_data.transpose(1, 2, 0))
2023-08-31 10:42:13 +00:00
axes[i].set_title(label)
axes[i].axis('off')
2023-09-02 15:26:10 +00:00
2023-08-31 10:42:13 +00:00
plt.show()
if __name__ == "__main__":
class CustomMultiModalDataset(Dataset):
def __init__(self, vision_folder, tactile_folder, transform=None):
self.vision_folder = vision_folder
self.tactile_folder = tactile_folder
self.transform = transform
self.vision_files = sorted(os.listdir(vision_folder))
self.tactile_files = sorted(os.listdir(tactile_folder))
def __len__(self):
return len(self.vision_files)
def __getitem__(self, idx):
vision_path = os.path.join(self.vision_folder, self.vision_files[idx])
tactile_path = os.path.join(self.tactile_folder, self.tactile_files[idx])
vision_image = Image.open(vision_path).convert("RGB")
tactile_image = Image.open(tactile_path).convert("RGB")
if self.transform:
vision_image = self.transform(vision_image)
tactile_image = self.transform(tactile_image)
return vision_image, tactile_image
# Initialize augmentation
simple_transforms = transforms.Compose([
transforms.CenterCrop(500),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Load the indices from disk
with open('indices/train_indices.pkl', 'rb') as f:
train_indices = pickle.load(f)
with open('indices/test_indices.pkl', 'rb') as f:
test_indices = pickle.load(f)
# Initialize dataset and dataloader
vision_folder = "/home/vedant/Downloads/ssvtp_data/images_rgb"
tactile_folder = "/home/vedant/Downloads/ssvtp_data/images_tac"
dataset = CustomMultiModalDataset(vision_folder, tactile_folder, transform=simple_transforms)
# Create subset datasets and DataLoaders
test_subset = torch.utils.data.Subset(dataset, test_indices)
test_dataloader = DataLoader(test_subset, batch_size=150, shuffle=False)
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter('runs/mmssl1')
model = MultiModalMoCo(writer).to('cuda')
model.load_state_dict(torch.load('/home/vedant/TacSSL/models/model.pth'))
compute_tsne(model, test_dataloader)