DBC/CARLA_0.9.8/PythonAPI/carla/agents/navigation/carla_env.py
2020-10-12 15:39:25 -07:00

745 lines
29 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2019 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
#
# Modified for DBC paper.
import random
import glob
import os
import sys
import time
from PIL import Image
from PIL.PngImagePlugin import PngImageFile, PngInfo
try:
sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
pass
import carla
import math
from dotmap import DotMap
try:
import pygame
except ImportError:
raise RuntimeError('cannot import pygame, make sure pygame package is installed')
try:
import numpy as np
except ImportError:
raise RuntimeError('cannot import numpy, make sure numpy package is installed')
try:
import queue
except ImportError:
import Queue as queue
from agents.navigation.agent import Agent, AgentState
from agents.navigation.local_planner import LocalPlanner
class CarlaSyncMode(object):
"""
Context manager to synchronize output from different sensors. Synchronous
mode is enabled as long as we are inside this context
with CarlaSyncMode(world, sensors) as sync_mode:
while True:
data = sync_mode.tick(timeout=1.0)
"""
def __init__(self, world, *sensors, **kwargs):
self.world = world
self.sensors = sensors
self.frame = None
self.delta_seconds = 1.0 / kwargs.get('fps', 20)
self._queues = []
self._settings = None
self.start()
def start(self):
self._settings = self.world.get_settings()
self.frame = self.world.apply_settings(carla.WorldSettings(
no_rendering_mode=False,
synchronous_mode=True,
fixed_delta_seconds=self.delta_seconds))
def make_queue(register_event):
q = queue.Queue()
register_event(q.put)
self._queues.append(q)
make_queue(self.world.on_tick)
for sensor in self.sensors:
make_queue(sensor.listen)
def tick(self, timeout):
self.frame = self.world.tick()
data = [self._retrieve_data(q, timeout) for q in self._queues]
assert all(x.frame == self.frame for x in data)
return data
def __exit__(self, *args, **kwargs):
self.world.apply_settings(self._settings)
def _retrieve_data(self, sensor_queue, timeout):
while True:
data = sensor_queue.get(timeout=timeout)
if data.frame == self.frame:
return data
def draw_image(surface, image, blend=False):
array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8"))
array = np.reshape(array, (image.height, image.width, 4))
array = array[:, :, :3]
array = array[:, :, ::-1]
image_surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
if blend:
image_surface.set_alpha(100)
surface.blit(image_surface, (0, 0))
def get_font():
fonts = [x for x in pygame.font.get_fonts()]
default_font = 'ubuntumono'
font = default_font if default_font in fonts else fonts[0]
font = pygame.font.match_font(font)
return pygame.font.Font(font, 14)
def should_quit():
for event in pygame.event.get():
if event.type == pygame.QUIT:
return True
elif event.type == pygame.KEYUP:
if event.key == pygame.K_ESCAPE:
return True
return False
def clamp(value, minimum=0.0, maximum=100.0):
return max(minimum, min(value, maximum))
class Sun(object):
def __init__(self, azimuth, altitude):
self.azimuth = azimuth
self.altitude = altitude
self._t = 0.0
def tick(self, delta_seconds):
self._t += 0.008 * delta_seconds
self._t %= 2.0 * math.pi
self.azimuth += 0.25 * delta_seconds
self.azimuth %= 360.0
# self.altitude = (70 * math.sin(self._t)) - 20 # [50, -90]
min_alt, max_alt = [30, 90]
self.altitude = 0.5 * (max_alt + min_alt) + 0.5 * (max_alt - min_alt) * math.cos(self._t)
def __str__(self):
return 'Sun(alt: %.2f, azm: %.2f)' % (self.altitude, self.azimuth)
class Storm(object):
def __init__(self, precipitation):
self._t = precipitation if precipitation > 0.0 else -50.0
self._increasing = True
self.clouds = 0.0
self.rain = 0.0
self.wetness = 0.0
self.puddles = 0.0
self.wind = 0.0
self.fog = 0.0
def tick(self, delta_seconds):
delta = (1.3 if self._increasing else -1.3) * delta_seconds
self._t = clamp(delta + self._t, -250.0, 100.0)
self.clouds = clamp(self._t + 40.0, 0.0, 60.0)
self.rain = clamp(self._t, 0.0, 80.0)
self.wind = 5.0 if self.clouds <= 20 else 90 if self.clouds >= 70 else 40
if self._t == -250.0:
self._increasing = True
if self._t == 100.0:
self._increasing = False
def __str__(self):
return 'Storm(clouds=%d%%, rain=%d%%, wind=%d%%)' % (self.clouds, self.rain, self.wind)
class Weather(object):
def __init__(self, world, changing_weather_speed):
self.world = world
self.reset()
self.weather = world.get_weather()
self.changing_weather_speed = changing_weather_speed
self._sun = Sun(self.weather.sun_azimuth_angle, self.weather.sun_altitude_angle)
self._storm = Storm(self.weather.precipitation)
def reset(self):
weather_params = carla.WeatherParameters(sun_altitude_angle=90.)
self.world.set_weather(weather_params)
def tick(self):
self._sun.tick(self.changing_weather_speed)
self._storm.tick(self.changing_weather_speed)
self.weather.cloudiness = self._storm.clouds
self.weather.precipitation = self._storm.rain
self.weather.precipitation_deposits = self._storm.puddles
self.weather.wind_intensity = self._storm.wind
self.weather.fog_density = self._storm.fog
self.weather.wetness = self._storm.wetness
self.weather.sun_azimuth_angle = self._sun.azimuth
self.weather.sun_altitude_angle = self._sun.altitude
self.world.set_weather(self.weather)
def __str__(self):
return '%s %s' % (self._sun, self._storm)
class CarlaEnv(object):
def __init__(self,
render_display=0, # 0, 1
record_display_images=0, # 0, 1
record_rl_images=0, # 0, 1
changing_weather_speed=0.0, # [0, +inf)
display_text=0, # 0, 1
rl_image_size=84,
max_episode_steps=1000,
frame_skip=1,
is_other_cars=True,
fov=60, # degrees for rl camera
num_cameras=3,
port=2000
):
if record_display_images:
assert render_display
self.render_display = render_display
self.save_display_images = record_display_images
self.save_rl_images = record_rl_images
self.changing_weather_speed = changing_weather_speed
self.display_text = display_text
self.rl_image_size = rl_image_size
self._max_episode_steps = max_episode_steps # DMC uses this
self.frame_skip = frame_skip
self.is_other_cars = is_other_cars
self.num_cameras = num_cameras
self.actor_list = []
if self.render_display:
pygame.init()
self.display = pygame.display.set_mode((800, 600), pygame.HWSURFACE | pygame.DOUBLEBUF)
self.font = get_font()
self.clock = pygame.time.Clock()
self.client = carla.Client('localhost', port)
self.client.set_timeout(5.0)
self.world = self.client.load_world("Town04")
self.map = self.world.get_map()
assert self.map.name == "Town04"
# remove old vehicles and sensors (in case they survived)
self.world.tick()
actor_list = self.world.get_actors()
for vehicle in actor_list.filter("*vehicle*"):
print("Warning: removing old vehicle")
vehicle.destroy()
for sensor in actor_list.filter("*sensor*"):
print("Warning: removing old sensor")
sensor.destroy()
self.vehicle = None
self.vehicle_start_pose = None
self.vehicles_list = [] # their ids
self.vehicles = None
self.reset_vehicle() # creates self.vehicle
self.actor_list.append(self.vehicle)
blueprint_library = self.world.get_blueprint_library()
if render_display:
bp = blueprint_library.find('sensor.camera.rgb')
bp.set_attribute('enable_postprocess_effects', str(True))
self.camera_rgb = self.world.spawn_actor(bp, carla.Transform(carla.Location(x=-5.5, z=2.8), carla.Rotation(pitch=-15)), attach_to=self.vehicle)
self.actor_list.append(self.camera_rgb)
# we'll use up to five cameras, which we'll stitch together
bp = blueprint_library.find('sensor.camera.rgb')
bp.set_attribute('image_size_x', str(self.rl_image_size))
bp.set_attribute('image_size_y', str(self.rl_image_size))
bp.set_attribute('fov', str(fov))
bp.set_attribute('enable_postprocess_effects', str(True))
location = carla.Location(x=1.6, z=1.7)
self.camera_rl = self.world.spawn_actor(bp, carla.Transform(location, carla.Rotation(yaw=0.0)), attach_to=self.vehicle)
self.camera_rl_left = self.world.spawn_actor(bp, carla.Transform(location, carla.Rotation(yaw=-float(fov))), attach_to=self.vehicle)
self.camera_rl_lefter = self.world.spawn_actor(bp, carla.Transform(location, carla.Rotation(yaw=-2*float(fov))), attach_to=self.vehicle)
self.camera_rl_right = self.world.spawn_actor(bp, carla.Transform(location, carla.Rotation(yaw=float(fov))), attach_to=self.vehicle)
self.camera_rl_righter = self.world.spawn_actor(bp, carla.Transform(location, carla.Rotation(yaw=2*float(fov))), attach_to=self.vehicle)
self.actor_list.append(self.camera_rl)
self.actor_list.append(self.camera_rl_left)
self.actor_list.append(self.camera_rl_lefter)
self.actor_list.append(self.camera_rl_right)
self.actor_list.append(self.camera_rl_righter)
bp = self.world.get_blueprint_library().find('sensor.other.collision')
self.collision_sensor = self.world.spawn_actor(bp, carla.Transform(), attach_to=self.vehicle)
self.collision_sensor.listen(lambda event: self._on_collision(event))
self.actor_list.append(self.collision_sensor)
self._collision_intensities_during_last_time_step = []
if self.save_display_images or self.save_rl_images:
import datetime
now = datetime.datetime.now()
image_dir = "images-" + now.strftime("%Y-%m-%d-%H-%M-%S")
os.mkdir(image_dir)
self.image_dir = image_dir
if self.render_display:
self.sync_mode = CarlaSyncMode(self.world, self.camera_rgb, self.camera_rl, self.camera_rl_left, self.camera_rl_lefter, self.camera_rl_right, self.camera_rl_righter, fps=20)
else:
self.sync_mode = CarlaSyncMode(self.world, self.camera_rl, self.camera_rl_left, self.camera_rl_lefter, self.camera_rl_right, self.camera_rl_righter, fps=20)
# weather
self.weather = Weather(self.world, self.changing_weather_speed)
# dummy variables given bisim's assumption on deep-mind-control suite APIs
low = -1.0
high = 1.0
self.action_space = DotMap()
self.action_space.low.min = lambda: low
self.action_space.high.max = lambda: high
self.action_space.shape = [2]
self.observation_space = DotMap()
self.observation_space.shape = (3, rl_image_size, num_cameras * rl_image_size)
self.observation_space.dtype = np.dtype(np.uint8)
self.reward_range = None
self.metadata = None
self.action_space.sample = lambda: np.random.uniform(low=low, high=high, size=self.action_space.shape[0]).astype(np.float32)
# roaming carla agent
self.agent = None
self.count = 0
self.dist_s = 0
self.return_ = 0
self.collide_count = 0
self.velocities = []
self.world.tick()
self.reset() # creates self.agent
def dist_from_center_lane(self, vehicle):
# assume on highway
vehicle_location = vehicle.get_location()
vehicle_waypoint = self.map.get_waypoint(vehicle_location)
vehicle_xy = np.array([vehicle_location.x, vehicle_location.y])
vehicle_s = vehicle_waypoint.s
vehicle_velocity = vehicle.get_velocity() # Vecor3D
vehicle_velocity_xy = np.array([vehicle_velocity.x, vehicle_velocity.y])
speed = np.linalg.norm(vehicle_velocity_xy)
vehicle_waypoint_closest_to_road = \
self.map.get_waypoint(vehicle_location, project_to_road=True, lane_type=carla.LaneType.Driving)
road_id = vehicle_waypoint_closest_to_road.road_id
assert road_id is not None
lane_id = int(vehicle_waypoint_closest_to_road.lane_id)
goal_lane_id = lane_id
current_waypoint = self.map.get_waypoint(vehicle_location, project_to_road=False)
goal_waypoint = self.map.get_waypoint_xodr(road_id, goal_lane_id, vehicle_s)
if goal_waypoint is None:
# try to fix, bit of a hack, with CARLA waypoint discretizations
carla_waypoint_discretization = 0.02 # meters
goal_waypoint = self.map.get_waypoint_xodr(road_id, goal_lane_id, vehicle_s - carla_waypoint_discretization)
if goal_waypoint is None:
goal_waypoint = self.map.get_waypoint_xodr(road_id, goal_lane_id, vehicle_s + carla_waypoint_discretization)
if goal_waypoint is None:
print("Episode fail: goal waypoint is off the road! (frame %d)" % self.count)
done, dist, vel_s = True, 100., 0.
else:
goal_location = goal_waypoint.transform.location
goal_xy = np.array([goal_location.x, goal_location.y])
dist = np.linalg.norm(vehicle_xy - goal_xy)
next_goal_waypoint = goal_waypoint.next(0.1) # waypoints are ever 0.02 meters
if len(next_goal_waypoint) != 1:
print('warning: {} waypoints (not 1)'.format(len(next_goal_waypoint)))
if len(next_goal_waypoint) == 0:
print("Episode done: no more waypoints left. (frame %d)" % self.count)
done, vel_s = True, 0.
else:
location_ahead = next_goal_waypoint[0].transform.location
highway_vector = np.array([location_ahead.x, location_ahead.y]) - goal_xy
highway_unit_vector = np.array(highway_vector) / np.linalg.norm(highway_vector)
vel_s = np.dot(vehicle_velocity_xy, highway_unit_vector)
done = False
# not algorithm's fault, but the simulator sometimes throws the car in the air wierdly
if vehicle_velocity.z > 1. and self.count < 20:
print("Episode done: vertical velocity too high ({}), usually a simulator glitch (frame {})".format(vehicle_velocity.z, self.count))
done = True
if vehicle_location.z > 0.5 and self.count < 20:
print("Episode done: vertical velocity too high ({}), usually a simulator glitch (frame {})".format(vehicle_location.z, self.count))
done = True
return dist, vel_s, speed, done
def _on_collision(self, event):
impulse = event.normal_impulse
intensity = math.sqrt(impulse.x ** 2 + impulse.y ** 2 + impulse.z ** 2)
print('Collision (intensity {})'.format(intensity))
self._collision_intensities_during_last_time_step.append(intensity)
def reset(self):
self.reset_vehicle()
self.world.tick()
self.reset_other_vehicles()
self.world.tick()
self.agent = RoamingAgentModified(self.vehicle, follow_traffic_lights=False)
self.count = 0
self.dist_s = 0
self.return_ = 0
self.velocities = []
obs, _, _, _ = self.step(action=None)
return obs
def reset_vehicle(self):
start_lane = random.choice([-1, -2, -3, -4])
self.vehicle_start_pose = self.map.get_waypoint_xodr(road_id=45, lane_id=start_lane, s=100.).transform
if self.vehicle is None:
# create vehicle
blueprint_library = self.world.get_blueprint_library()
vehicle_blueprint = blueprint_library.find('vehicle.audi.a2')
self.vehicle = self.world.spawn_actor(vehicle_blueprint, self.vehicle_start_pose)
# self.vehicle.set_light_state(carla.libcarla.VehicleLightState.HighBeam) # HighBeam # LowBeam # All
else:
self.vehicle.set_transform(self.vehicle_start_pose)
self.vehicle.set_velocity(carla.Vector3D())
self.vehicle.set_angular_velocity(carla.Vector3D())
def reset_other_vehicles(self):
if not self.is_other_cars:
return
# clear out old vehicles
self.client.apply_batch([carla.command.DestroyActor(x) for x in self.vehicles_list])
self.world.tick()
self.vehicles_list = []
traffic_manager = self.client.get_trafficmanager() # 8000? which port?
traffic_manager.set_global_distance_to_leading_vehicle(2.0)
traffic_manager.set_synchronous_mode(True)
blueprints = self.world.get_blueprint_library().filter('vehicle.*')
blueprints = [x for x in blueprints if int(x.get_attribute('number_of_wheels')) == 4]
road_id = 45
num_vehicles = 20
other_car_waypoints = []
for _ in range(num_vehicles):
lane_id = random.choice([-1, -2, -3, -4])
vehicle_s = np.random.uniform(100., 300.)
other_car_waypoints.append(self.map.get_waypoint_xodr(road_id, lane_id, vehicle_s))
# Spawn vehicles
batch = []
for n, waypoint in enumerate(other_car_waypoints):
transform = waypoint.transform
transform.location.z += 0.1
blueprint = random.choice(blueprints)
if blueprint.has_attribute('color'):
color = random.choice(blueprint.get_attribute('color').recommended_values)
blueprint.set_attribute('color', color)
if blueprint.has_attribute('driver_id'):
driver_id = random.choice(blueprint.get_attribute('driver_id').recommended_values)
blueprint.set_attribute('driver_id', driver_id)
blueprint.set_attribute('role_name', 'autopilot')
batch.append(carla.command.SpawnActor(blueprint, transform).then(
carla.command.SetAutopilot(carla.command.FutureActor, True)))
for response in self.client.apply_batch_sync(batch, False):
self.vehicles_list.append(response.actor_id)
for response in self.client.apply_batch_sync(batch):
if response.error:
pass
# print(response.error)
else:
self.vehicles_list.append(response.actor_id)
traffic_manager.global_percentage_speed_difference(30.0)
def compute_steer_action(self):
control = self.agent.run_step() # PID decides control.steer
steer = control.steer
throttle = control.throttle
brake = control.brake
throttle_brake = -brake
if throttle > 0.:
throttle_brake = throttle
steer_action = np.array([steer, throttle_brake], dtype=np.float32)
return steer_action
def step(self, action):
rewards = []
for _ in range(self.frame_skip): # default 1
next_obs, reward, done, info = self._simulator_step(action)
rewards.append(reward)
if done:
break
return next_obs, np.mean(rewards), done, info # just last info?
def _simulator_step(self, action, dt=0.05):
if self.render_display:
if should_quit():
return
self.clock.tick()
if action is not None:
steer = float(action[0])
throttle_brake = float(action[1])
if throttle_brake >= 0.0:
throttle = throttle_brake
brake = 0.0
else:
throttle = 0.0
brake = -throttle_brake
assert 0.0 <= throttle <= 1.0
assert -1.0 <= steer <= 1.0
assert 0.0 <= brake <= 1.0
vehicle_control = carla.VehicleControl(
throttle=throttle,
steer=steer,
brake=brake,
hand_brake=False,
reverse=False,
manual_gear_shift=False
)
self.vehicle.apply_control(vehicle_control)
else:
throttle, steer, brake = 0., 0., 0.
# Advance the simulation and wait for the data.
if self.render_display:
snapshot, image_rgb, image_rl, image_rl_left, image_rl_lefter, image_rl_right, image_rl_righter = self.sync_mode.tick(timeout=2.0)
else:
snapshot, image_rl, image_rl_left, image_rl_lefter, image_rl_right, image_rl_righter = self.sync_mode.tick(timeout=2.0)
dist_from_center, vel_s, speed, done = self.dist_from_center_lane(self.vehicle)
collision_intensities_during_last_time_step = sum(self._collision_intensities_during_last_time_step)
self._collision_intensities_during_last_time_step.clear() # clear it ready for next time step
assert collision_intensities_during_last_time_step >= 0.
colliding = float(collision_intensities_during_last_time_step > 0.)
if colliding:
self.collide_count += 1
else:
self.collide_count = 0
if self.collide_count >= 20:
print("Episode fail: too many collisions ({})! (frame {})".format(speed, self.collide_count))
done = True
reward = vel_s * dt / (1. + dist_from_center) - 1.0 * colliding - 0.1 * brake - 0.1 * abs(steer)
self.dist_s += vel_s * dt
self.return_ += reward
self.weather.tick()
# Draw the display.
if self.render_display:
draw_image(self.display, image_rgb)
if self.display_text:
self.display.blit(self.font.render('frame %d' % self.count, True, (255, 255, 255)), (8, 10))
self.display.blit(self.font.render('highway progression %4.1f m/s (%5.2f m) (%5.2f speed)' % (vel_s, self.dist_s, speed), True, (255, 255, 255)), (8, 28))
self.display.blit(self.font.render('%5.2f meters off center' % dist_from_center, True, (255, 255, 255)), (8, 46))
self.display.blit(self.font.render('%5.2f reward (return %.1f)' % (reward, self.return_), True, (255, 255, 255)), (8, 64))
self.display.blit(self.font.render('%5.2f collision intensity ' % collision_intensities_during_last_time_step, True, (255, 255, 255)), (8, 82))
self.display.blit(self.font.render('%5.2f thottle, %5.2f steer, %5.2f brake' % (throttle, steer, brake), True, (255, 255, 255)), (8, 100))
self.display.blit(self.font.render(str(self.weather), True, (255, 255, 255)), (8, 118))
pygame.display.flip()
rgbs = []
if self.num_cameras == 1:
ims = [image_rl]
elif self.num_cameras == 3:
ims = [image_rl_left, image_rl, image_rl_right]
elif self.num_cameras == 5:
ims = [image_rl_lefter, image_rl_left, image_rl, image_rl_right, image_rl_righter]
else:
raise ValueError("num cameras must be 1 or 3 or 5")
for im in ims:
bgra = np.array(im.raw_data).reshape(self.rl_image_size, self.rl_image_size, 4) # BGRA format
bgr = bgra[:, :, :3] # BGR format (84 x 84 x 3)
rgb = np.flip(bgr, axis=2) # RGB format (84 x 84 x 3)
rgbs.append(rgb)
rgb = np.concatenate(rgbs, axis=1) # (84 x 252 x 3)
# Rowan added
if self.render_display and self.save_display_images:
image_name = os.path.join(self.image_dir, "display%08d.jpg" % self.count)
pygame.image.save(self.display, image_name)
# ffmpeg -r 20 -pattern_type glob -i 'display*.jpg' carla.mp4
if self.save_rl_images:
image_name = os.path.join(self.image_dir, "rl%08d.png" % self.count)
im = Image.fromarray(rgb)
metadata = PngInfo()
metadata.add_text("throttle", str(throttle))
metadata.add_text("steer", str(steer))
metadata.add_text("brake", str(brake))
im.save(image_name, "PNG", pnginfo=metadata)
# # Example usage:
# from PIL.PngImagePlugin import PngImageFile
# im = PngImageFile("rl00001234.png")
# # Actions are stored in the image's metadata:
# print("Actions: %s" % im.text)
# throttle = float(im.text['throttle']) # range [0, 1]
# steer = float(im.text['steer']) # range [-1, 1]
# brake = float(im.text['brake']) # range [0, 1]
self.count += 1
next_obs = rgb # (84 x 252 x 3) or (84 x 420 x 3)
# debugging - to inspect images:
# import matplotlib.pyplot as plt
# import pdb; pdb.set_trace()
# plt.imshow(next_obs)
# plt.show()
next_obs = np.transpose(next_obs, [2, 0, 1]) # 3 x 84 x 84/252/420
assert next_obs.shape == self.observation_space.shape
if self.count >= self._max_episode_steps:
print("Episode success: I've reached the episode horizon ({}).".format(self._max_episode_steps))
done = True
if speed < 0.02 and self.count >= 100 and self.count % 100 == 0: # a hack, instead of a counter
print("Episode fail: speed too small ({}), think I'm stuck! (frame {})".format(speed, self.count))
done = True
info = None
return next_obs, reward, done, info
def finish(self):
print('destroying actors.')
for actor in self.actor_list:
actor.destroy()
print('\ndestroying %d vehicles' % len(self.vehicles_list))
self.client.apply_batch([carla.command.DestroyActor(x) for x in self.vehicles_list])
time.sleep(0.5)
pygame.quit()
print('done.')
class LocalPlannerModified(LocalPlanner):
def __del__(self):
pass # otherwise it deletes our vehicle object
def run_step(self):
return super().run_step(debug=False) # otherwise by default shows waypoints, that interfere with our camera
class RoamingAgentModified(Agent):
"""
RoamingAgent implements a basic agent that navigates scenes making random
choices when facing an intersection.
This agent respects traffic lights and other vehicles.
"""
def __init__(self, vehicle, follow_traffic_lights=True):
"""
:param vehicle: actor to apply to local planner logic onto
"""
super(RoamingAgentModified, self).__init__(vehicle)
self._proximity_threshold = 10.0 # meters
self._state = AgentState.NAVIGATING
self._follow_traffic_lights = follow_traffic_lights
# for throttle 0.5, 0.75, 1.0
args_lateral_dict = {
'K_P': 1.0,
'K_D': 0.005,
'K_I': 0.0,
'dt': 1.0 / 20.0}
opt_dict = {'lateral_control_dict': args_lateral_dict}
self._local_planner = LocalPlannerModified(self._vehicle, opt_dict)
def run_step(self, debug=False):
"""
Execute one step of navigation.
:return: carla.VehicleControl
"""
# is there an obstacle in front of us?
hazard_detected = False
# retrieve relevant elements for safe navigation, i.e.: traffic lights
# and other vehicles
actor_list = self._world.get_actors()
vehicle_list = actor_list.filter("*vehicle*")
lights_list = actor_list.filter("*traffic_light*")
# check possible obstacles
vehicle_state, vehicle = self._is_vehicle_hazard(vehicle_list)
if vehicle_state:
if debug:
print('!!! VEHICLE BLOCKING AHEAD [{}])'.format(vehicle.id))
self._state = AgentState.BLOCKED_BY_VEHICLE
hazard_detected = True
# check for the state of the traffic lights
light_state, traffic_light = self._is_light_red(lights_list)
if light_state and self._follow_traffic_lights:
if debug:
print('=== RED LIGHT AHEAD [{}])'.format(traffic_light.id))
self._state = AgentState.BLOCKED_RED_LIGHT
hazard_detected = True
if hazard_detected:
control = self.emergency_stop()
else:
self._state = AgentState.NAVIGATING
# standard local planner behavior
control = self._local_planner.run_step()
return control
if __name__ == '__main__':
env = CarlaEnv(
render_display=1, # 0, 1
record_display_images=1, # 0, 1
record_rl_images=1, # 0, 1
changing_weather_speed=1.0, # [0, +inf)
display_text=0, # 0, 1
is_other_cars=True,
frame_skip=4,
max_episode_steps=100000,
rl_image_size=84
)
try:
done = False
while not done:
action = env.compute_steer_action()
next_obs, reward, done, info = env.step(action)
obs = env.reset()
finally:
env.finish()