Compare commits

..

No commits in common. "4d57be91cdc59d425b3a2d653fdbca26d6605784" and "0fc1b8bd37f9f3a416ed36236e2745ae2c109d79" have entirely different histories.

4 changed files with 19 additions and 26 deletions

View File

@ -52,19 +52,16 @@ while an evaluation entry:
```
which just tells the expected reward `ER` evaluating current policy after `S` steps. Note that `ER` is average evaluation performance over `num_eval_episodes` episodes (usually 10).
### Running the natural video setting
You can download the Kinetics 400 dataset and grab the driving_car label from the train dataset to replicate our setup. Some instructions for downloading the dataset can be found here: https://github.com/Showmax/kinetics-downloader.
## CARLA
Download CARLA from https://github.com/carla-simulator/carla/releases, e.g.:
1. https://carla-releases.s3.eu-west-3.amazonaws.com/Linux/CARLA_0.9.6.tar.gz
2. https://carla-releases.s3.eu-west-3.amazonaws.com/Linux/AdditionalMaps_0.9.6.tar.gz
1. https://carla-releases.s3.eu-west-3.amazonaws.com/Linux/CARLA_0.9.8.tar.gz
2. https://carla-releases.s3.eu-west-3.amazonaws.com/Linux/AdditionalMaps_0.9.8.tar.gz
Add to your python path:
```
export PYTHONPATH=$PYTHONPATH:/home/rmcallister/code/bisim_metric/CARLA_0.9.6/PythonAPI
export PYTHONPATH=$PYTHONPATH:/home/rmcallister/code/bisim_metric/CARLA_0.9.6/PythonAPI/carla
export PYTHONPATH=$PYTHONPATH:/home/rmcallister/code/bisim_metric/CARLA_0.9.6/PythonAPI/carla/dist/carla-0.9.8-py3.5-linux-x86_64.egg
export PYTHONPATH=$PYTHONPATH:/home/rmcallister/code/bisim_metric/CARLA_0.9.8/PythonAPI
export PYTHONPATH=$PYTHONPATH:/home/rmcallister/code/bisim_metric/CARLA_0.9.8/PythonAPI/carla
export PYTHONPATH=$PYTHONPATH:/home/rmcallister/code/bisim_metric/CARLA_0.9.8/PythonAPI/carla/dist/carla-0.9.8-py3.5-linux-x86_64.egg
```
and merge the directories.

View File

@ -13,7 +13,7 @@ dependencies:
- git+git://github.com/deepmind/dm_control.git
- git+git://github.com/1nadequacy/dmc2gym.git
- opencv-python
- pillow==6.1
- pillow=6.1
- scikit-image
- scikit-video
- tb-nightly

View File

@ -20,7 +20,7 @@ from video import VideoRecorder
from agent.baseline_agent import BaselineAgent
from agent.bisim_agent import BisimAgent
from agent.deepmdp_agent import DeepMDPAgent
#from agents.navigation.carla_env import CarlaEnv
from agents.navigation.carla_env import CarlaEnv
def parse_args():
@ -34,15 +34,14 @@ def parse_args():
parser.add_argument('--resource_files', type=str)
parser.add_argument('--eval_resource_files', type=str)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
parser.add_argument('--total_frames', default=100, type=int)
parser.add_argument('--high_noise', action='store_true')
parser.add_argument('--total_frames', default=1000, type=int)
# replay buffer
parser.add_argument('--replay_buffer_capacity', default=50000, type=int)
parser.add_argument('--replay_buffer_capacity', default=1000000, type=int)
# train
parser.add_argument('--agent', default='bisim', type=str, choices=['baseline', 'bisim', 'deepmdp'])
parser.add_argument('--init_steps', default=1000, type=int)
parser.add_argument('--num_train_steps', default=1000050, type=int)
parser.add_argument('--batch_size', default=128, type=int) # 512
parser.add_argument('--num_train_steps', default=1000000, type=int)
parser.add_argument('--batch_size', default=512, type=int)
parser.add_argument('--hidden_dim', default=256, type=int)
parser.add_argument('--k', default=3, type=int, help='number of steps for inverse model')
parser.add_argument('--bisim_coef', default=0.5, type=float, help='coefficient for bisim terms')
@ -51,12 +50,12 @@ def parse_args():
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
parser.add_argument('--num_eval_episodes', default=20, type=int)
# critic
parser.add_argument('--critic_lr', default=1e-5, type=float)
parser.add_argument('--critic_lr', default=1e-3, type=float)
parser.add_argument('--critic_beta', default=0.9, type=float)
parser.add_argument('--critic_tau', default=0.005, type=float)
parser.add_argument('--critic_target_update_freq', default=2, type=int)
# actor
parser.add_argument('--actor_lr', default=1e-5, type=float)
parser.add_argument('--actor_lr', default=1e-3, type=float)
parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float)
@ -64,19 +63,19 @@ def parse_args():
# encoder/decoder
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
parser.add_argument('--encoder_feature_dim', default=50, type=int)
parser.add_argument('--encoder_lr', default=1e-5, type=float)
parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.005, type=float)
parser.add_argument('--encoder_stride', default=1, type=int)
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
parser.add_argument('--decoder_lr', default=1e-5, type=float)
parser.add_argument('--decoder_lr', default=1e-3, type=float)
parser.add_argument('--decoder_update_freq', default=1, type=int)
parser.add_argument('--decoder_weight_lambda', default=0.0, type=float)
parser.add_argument('--num_layers', default=4, type=int)
parser.add_argument('--num_filters', default=32, type=int)
# sac
parser.add_argument('--discount', default=0.99, type=float)
parser.add_argument('--init_temperature', default=0.1, type=float)
parser.add_argument('--alpha_lr', default=1e-4, type=float)
parser.add_argument('--init_temperature', default=0.01, type=float)
parser.add_argument('--alpha_lr', default=1e-3, type=float)
parser.add_argument('--alpha_beta', default=0.9, type=float)
# misc
parser.add_argument('--seed', default=1, type=int)
@ -89,9 +88,6 @@ def parse_args():
parser.add_argument('--render', default=False, action='store_true')
parser.add_argument('--port', default=2000, type=int)
args = parser.parse_args()
#from dmc2gym.wrappers import set_global_var
#set_global_var(args.high_noise)
return args
@ -322,7 +318,7 @@ def main():
)
# stack several consecutive frames together
if args.encoder_type.startswith('pixel'):
if args.encoder_type == 'pixel':
env = utils.FrameStack(env, k=args.frame_stack)
eval_env = utils.FrameStack(eval_env, k=args.frame_stack)

View File

@ -22,7 +22,7 @@ class VideoRecorder(object):
self.frames = []
if resource_files:
files = glob.glob(os.path.expanduser(resource_files))
self._bg_source = RandomVideoSource((height, width), files, grayscale=False, max_videos=50, random_bg=False)
self._bg_source = RandomVideoSource((height, width), files, grayscale=False, total_frames=1000)
else:
self._bg_source = None