DBC/local_dm_control_suite/wrappers/action_noise.py

75 lines
2.7 KiB
Python
Raw Normal View History

2020-10-12 22:39:25 +00:00
# Copyright 2018 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Wrapper control suite environments that adds Gaussian noise to actions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import dm_env
import numpy as np
_BOUNDS_MUST_BE_FINITE = (
'All bounds in `env.action_spec()` must be finite, got: {action_spec}')
class Wrapper(dm_env.Environment):
"""Wraps a control environment and adds Gaussian noise to actions."""
def __init__(self, env, scale=0.01):
"""Initializes a new action noise Wrapper.
Args:
env: The control suite environment to wrap.
scale: The standard deviation of the noise, expressed as a fraction
of the max-min range for each action dimension.
Raises:
ValueError: If any of the action dimensions of the wrapped environment are
unbounded.
"""
action_spec = env.action_spec()
if not (np.all(np.isfinite(action_spec.minimum)) and
np.all(np.isfinite(action_spec.maximum))):
raise ValueError(_BOUNDS_MUST_BE_FINITE.format(action_spec=action_spec))
self._minimum = action_spec.minimum
self._maximum = action_spec.maximum
self._noise_std = scale * (action_spec.maximum - action_spec.minimum)
self._env = env
def step(self, action):
noisy_action = action + self._env.task.random.normal(scale=self._noise_std)
# Clip the noisy actions in place so that they fall within the bounds
# specified by the `action_spec`. Note that MuJoCo implicitly clips out-of-
# bounds control inputs, but we also clip here in case the actions do not
# correspond directly to MuJoCo actuators, or if there are other wrapper
# layers that expect the actions to be within bounds.
np.clip(noisy_action, self._minimum, self._maximum, out=noisy_action)
return self._env.step(noisy_action)
def reset(self):
return self._env.reset()
def observation_spec(self):
return self._env.observation_spec()
def action_spec(self):
return self._env.action_spec()
def __getattr__(self, name):
return getattr(self._env, name)