170 lines
5.1 KiB
Python
170 lines
5.1 KiB
Python
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
||
|
# All rights reserved.
|
||
|
|
||
|
# This source code is licensed under the license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
|
||
|
def tie_weights(src, trg):
|
||
|
assert type(src) == type(trg)
|
||
|
trg.weight = src.weight
|
||
|
trg.bias = src.bias
|
||
|
|
||
|
|
||
|
class PixelEncoder(nn.Module):
|
||
|
"""Convolutional encoder of pixels observations."""
|
||
|
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32, stride=None):
|
||
|
super().__init__()
|
||
|
|
||
|
assert len(obs_shape) == 3
|
||
|
|
||
|
self.feature_dim = feature_dim
|
||
|
self.num_layers = num_layers
|
||
|
|
||
|
self.convs = nn.ModuleList(
|
||
|
[nn.Conv2d(obs_shape[0], num_filters, 3, stride=2)]
|
||
|
)
|
||
|
for i in range(num_layers - 1):
|
||
|
self.convs.append(nn.Conv2d(num_filters, num_filters, 3, stride=1))
|
||
|
|
||
|
out_dim = {2: 39, 4: 35, 6: 31}[num_layers]
|
||
|
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim)
|
||
|
self.ln = nn.LayerNorm(self.feature_dim)
|
||
|
|
||
|
self.outputs = dict()
|
||
|
|
||
|
def reparameterize(self, mu, logstd):
|
||
|
std = torch.exp(logstd)
|
||
|
eps = torch.randn_like(std)
|
||
|
return mu + eps * std
|
||
|
|
||
|
def forward_conv(self, obs):
|
||
|
obs = obs / 255.
|
||
|
self.outputs['obs'] = obs
|
||
|
|
||
|
conv = torch.relu(self.convs[0](obs))
|
||
|
self.outputs['conv1'] = conv
|
||
|
|
||
|
for i in range(1, self.num_layers):
|
||
|
conv = torch.relu(self.convs[i](conv))
|
||
|
self.outputs['conv%s' % (i + 1)] = conv
|
||
|
|
||
|
h = conv.view(conv.size(0), -1)
|
||
|
return h
|
||
|
|
||
|
def forward(self, obs, detach=False):
|
||
|
h = self.forward_conv(obs)
|
||
|
|
||
|
if detach:
|
||
|
h = h.detach()
|
||
|
|
||
|
h_fc = self.fc(h)
|
||
|
self.outputs['fc'] = h_fc
|
||
|
|
||
|
out = self.ln(h_fc)
|
||
|
self.outputs['ln'] = out
|
||
|
|
||
|
return out
|
||
|
|
||
|
def copy_conv_weights_from(self, source):
|
||
|
"""Tie convolutional layers"""
|
||
|
# only tie conv layers
|
||
|
for i in range(self.num_layers):
|
||
|
tie_weights(src=source.convs[i], trg=self.convs[i])
|
||
|
|
||
|
def log(self, L, step, log_freq):
|
||
|
if step % log_freq != 0:
|
||
|
return
|
||
|
|
||
|
for k, v in self.outputs.items():
|
||
|
L.log_histogram('train_encoder/%s_hist' % k, v, step)
|
||
|
if len(v.shape) > 2:
|
||
|
L.log_image('train_encoder/%s_img' % k, v[0], step)
|
||
|
|
||
|
for i in range(self.num_layers):
|
||
|
L.log_param('train_encoder/conv%s' % (i + 1), self.convs[i], step)
|
||
|
L.log_param('train_encoder/fc', self.fc, step)
|
||
|
L.log_param('train_encoder/ln', self.ln, step)
|
||
|
|
||
|
|
||
|
class PixelEncoderCarla096(PixelEncoder):
|
||
|
"""Convolutional encoder of pixels observations."""
|
||
|
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32, stride=1):
|
||
|
super(PixelEncoder, self).__init__()
|
||
|
|
||
|
assert len(obs_shape) == 3
|
||
|
|
||
|
self.feature_dim = feature_dim
|
||
|
self.num_layers = num_layers
|
||
|
|
||
|
self.convs = nn.ModuleList(
|
||
|
[nn.Conv2d(obs_shape[0], num_filters, 3, stride=2)]
|
||
|
)
|
||
|
for i in range(num_layers - 1):
|
||
|
self.convs.append(nn.Conv2d(num_filters, num_filters, 3, stride=stride))
|
||
|
|
||
|
out_dims = 100 # if defaults change, adjust this as needed
|
||
|
self.fc = nn.Linear(num_filters * out_dims, self.feature_dim)
|
||
|
self.ln = nn.LayerNorm(self.feature_dim)
|
||
|
|
||
|
self.outputs = dict()
|
||
|
|
||
|
|
||
|
class PixelEncoderCarla098(PixelEncoder):
|
||
|
"""Convolutional encoder of pixels observations."""
|
||
|
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32, stride=1):
|
||
|
super(PixelEncoder, self).__init__()
|
||
|
|
||
|
assert len(obs_shape) == 3
|
||
|
|
||
|
self.feature_dim = feature_dim
|
||
|
self.num_layers = num_layers
|
||
|
|
||
|
self.convs = nn.ModuleList()
|
||
|
self.convs.append(nn.Conv2d(obs_shape[0], 64, 5, stride=2))
|
||
|
self.convs.append(nn.Conv2d(64, 128, 3, stride=2))
|
||
|
self.convs.append(nn.Conv2d(128, 256, 3, stride=2))
|
||
|
self.convs.append(nn.Conv2d(256, 256, 3, stride=2))
|
||
|
|
||
|
out_dims = 56 # 3 cameras
|
||
|
# out_dims = 100 # 5 cameras
|
||
|
self.fc = nn.Linear(256 * out_dims, self.feature_dim)
|
||
|
self.ln = nn.LayerNorm(self.feature_dim)
|
||
|
|
||
|
self.outputs = dict()
|
||
|
|
||
|
|
||
|
class IdentityEncoder(nn.Module):
|
||
|
def __init__(self, obs_shape, feature_dim, num_layers, num_filters):
|
||
|
super().__init__()
|
||
|
|
||
|
assert len(obs_shape) == 1
|
||
|
self.feature_dim = obs_shape[0]
|
||
|
|
||
|
def forward(self, obs, detach=False):
|
||
|
return obs
|
||
|
|
||
|
def copy_conv_weights_from(self, source):
|
||
|
pass
|
||
|
|
||
|
def log(self, L, step, log_freq):
|
||
|
pass
|
||
|
|
||
|
|
||
|
_AVAILABLE_ENCODERS = {'pixel': PixelEncoder,
|
||
|
'pixelCarla096': PixelEncoderCarla096,
|
||
|
'pixelCarla098': PixelEncoderCarla098,
|
||
|
'identity': IdentityEncoder}
|
||
|
|
||
|
|
||
|
def make_encoder(
|
||
|
encoder_type, obs_shape, feature_dim, num_layers, num_filters, stride
|
||
|
):
|
||
|
assert encoder_type in _AVAILABLE_ENCODERS
|
||
|
return _AVAILABLE_ENCODERS[encoder_type](
|
||
|
obs_shape, feature_dim, num_layers, num_filters, stride
|
||
|
)
|