DBC/agent/baseline_agent.py

364 lines
14 KiB
Python
Raw Normal View History

2020-10-12 22:39:25 +00:00
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
from sac_ae import Actor, Critic, weight_init, LOG_FREQ
from transition_model import make_transition_model
from decoder import make_decoder
class BaselineAgent(object):
"""Baseline algorithm with transition model and various decoder types."""
def __init__(
self,
obs_shape,
action_shape,
device,
hidden_dim=256,
discount=0.99,
init_temperature=0.01,
alpha_lr=1e-3,
alpha_beta=0.9,
actor_lr=1e-3,
actor_beta=0.9,
actor_log_std_min=-10,
actor_log_std_max=2,
actor_update_freq=2,
critic_lr=1e-3,
critic_beta=0.9,
critic_tau=0.005,
critic_target_update_freq=2,
encoder_type='pixel',
encoder_stride=2,
encoder_feature_dim=50,
encoder_lr=1e-3,
encoder_tau=0.005,
decoder_type='pixel',
decoder_lr=1e-3,
decoder_update_freq=1,
decoder_weight_lambda=0.0,
transition_model_type='deterministic',
num_layers=4,
num_filters=32
):
self.device = device
self.discount = discount
self.critic_tau = critic_tau
self.encoder_tau = encoder_tau
self.actor_update_freq = actor_update_freq
self.critic_target_update_freq = critic_target_update_freq
self.decoder_update_freq = decoder_update_freq
self.decoder_type = decoder_type
self.hinge = 1.
self.sigma = 0.5
self.actor = Actor(
obs_shape, action_shape, hidden_dim, encoder_type,
encoder_feature_dim, actor_log_std_min, actor_log_std_max,
num_layers, num_filters, encoder_stride
).to(device)
self.critic = Critic(
obs_shape, action_shape, hidden_dim, encoder_type,
encoder_feature_dim, num_layers, num_filters, encoder_stride
).to(device)
self.critic_target = Critic(
obs_shape, action_shape, hidden_dim, encoder_type,
encoder_feature_dim, num_layers, num_filters, encoder_stride
).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.transition_model = make_transition_model(
transition_model_type, encoder_feature_dim, action_shape
).to(device)
# optimizer for decoder
self.decoder_optimizer = torch.optim.Adam(
self.transition_model.parameters(),
lr=decoder_lr,
weight_decay=decoder_weight_lambda
)
# tie encoders between actor and critic
self.actor.encoder.copy_conv_weights_from(self.critic.encoder)
self.log_alpha = torch.tensor(np.log(init_temperature)).to(device)
self.log_alpha.requires_grad = True
# set target entropy to -|A|
self.target_entropy = -np.prod(action_shape)
self.decoder = None
encoder_params = list(self.critic.encoder.parameters()) + list(self.transition_model.parameters())
if decoder_type == 'pixel':
# create decoder
self.decoder = make_decoder(
decoder_type, obs_shape, encoder_feature_dim, num_layers,
num_filters
).to(device)
self.decoder.apply(weight_init)
elif decoder_type == 'inverse':
self.inverse_model = nn.Sequential(
nn.Linear(encoder_feature_dim * 2, 512),
nn.LayerNorm(512),
nn.ReLU(),
nn.Linear(512, action_shape[0])).to(device)
encoder_params += list(self.inverse_model.parameters())
if decoder_type != 'identity':
# optimizer for critic encoder for reconstruction loss
self.encoder_optimizer = torch.optim.Adam(encoder_params, lr=encoder_lr)
if decoder_type == 'pixel': # optimizer for decoder
self.decoder_optimizer = torch.optim.Adam(
self.decoder.parameters(),
lr=decoder_lr,
weight_decay=decoder_weight_lambda
)
# optimizer for critic encoder for reconstruction loss
self.encoder_optimizer = torch.optim.Adam(
self.critic.encoder.parameters(), lr=encoder_lr
)
# optimizers
self.actor_optimizer = torch.optim.Adam(
self.actor.parameters(), lr=actor_lr, betas=(actor_beta, 0.999)
)
self.critic_optimizer = torch.optim.Adam(
self.critic.parameters(), lr=critic_lr, betas=(critic_beta, 0.999)
)
self.log_alpha_optimizer = torch.optim.Adam(
[self.log_alpha], lr=alpha_lr, betas=(alpha_beta, 0.999)
)
self.train()
self.critic_target.train()
def energy(self, state, action, next_state, no_trans=False):
"""Energy function based on normalized squared L2 norm."""
norm = 0.5 / (self.sigma**2)
if no_trans:
diff = state - next_state
normalization = 0.
else:
pred_trans_mu, pred_trans_sigma = self.transition_model(torch.cat([state, action], dim=1))
if pred_trans_sigma is None:
pred_trans_sigma = torch.Tensor([1.]).to(self.device)
if isinstance(pred_trans_mu, list): # i.e. comes from an ensemble
raise NotImplementedError # TODO: handle the additional ensemble dimension (0) in this case
diff = (state + pred_trans_mu - next_state) / pred_trans_sigma
normalization = torch.log(pred_trans_sigma)
return norm * (diff.pow(2) + normalization).sum(1)
def contrastive_loss(self, state, action, next_state):
# Sample negative state across episodes at random
batch_size = state.size(0)
perm = np.random.permutation(batch_size)
neg_state = state[perm]
self.pos_loss = self.energy(state, action, next_state)
zeros = torch.zeros_like(self.pos_loss)
self.pos_loss = self.pos_loss.mean()
self.neg_loss = torch.max(
zeros, self.hinge - self.energy(
state, action, neg_state, no_trans=True)).mean()
loss = self.pos_loss + self.neg_loss
return loss
def train(self, training=True):
self.training = training
self.actor.train(training)
self.critic.train(training)
if self.decoder is not None:
self.decoder.train(training)
@property
def alpha(self):
return self.log_alpha.exp()
def select_action(self, obs):
with torch.no_grad():
obs = torch.FloatTensor(obs).to(self.device)
obs = obs.unsqueeze(0)
mu, _, _, _ = self.actor(
obs, compute_pi=False, compute_log_pi=False
)
return mu.cpu().data.numpy().flatten()
def sample_action(self, obs):
with torch.no_grad():
obs = torch.FloatTensor(obs).to(self.device)
obs = obs.unsqueeze(0)
mu, pi, _, _ = self.actor(obs, compute_log_pi=False)
return pi.cpu().data.numpy().flatten()
def update_critic(self, obs, action, reward, next_obs, not_done, L, step):
with torch.no_grad():
_, policy_action, log_pi, _ = self.actor(next_obs)
target_Q1, target_Q2 = self.critic_target(next_obs, policy_action)
target_V = torch.min(target_Q1,
target_Q2) - self.alpha.detach() * log_pi
target_Q = reward + (not_done * self.discount * target_V)
# get current Q estimates
current_Q1, current_Q2 = self.critic(obs, action, detach_encoder=False)
critic_loss = F.mse_loss(current_Q1,
target_Q) + F.mse_loss(current_Q2, target_Q)
L.log('train_critic/loss', critic_loss, step)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
self.critic.log(L, step)
def update_actor_and_alpha(self, obs, L, step):
# detach encoder, so we don't update it with the actor loss
_, pi, log_pi, log_std = self.actor(obs, detach_encoder=True)
actor_Q1, actor_Q2 = self.critic(obs, pi, detach_encoder=True)
actor_Q = torch.min(actor_Q1, actor_Q2)
actor_loss = (self.alpha.detach() * log_pi - actor_Q).mean()
L.log('train_actor/loss', actor_loss, step)
L.log('train_actor/target_entropy', self.target_entropy, step)
entropy = 0.5 * log_std.shape[1] * (1.0 + np.log(2 * np.pi)
) + log_std.sum(dim=-1)
L.log('train_actor/entropy', entropy.mean(), step)
# optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
self.actor.log(L, step)
self.log_alpha_optimizer.zero_grad()
alpha_loss = (self.alpha *
(-log_pi - self.target_entropy).detach()).mean()
L.log('train_alpha/loss', alpha_loss, step)
L.log('train_alpha/value', self.alpha, step)
alpha_loss.backward()
self.log_alpha_optimizer.step()
def update_decoder(self, obs, action, target_obs, L, step): # uses transition model
# image might be stacked, just grab the first 3 (rgb)!
assert target_obs.dim() == 4
target_obs = target_obs[:, :3, :, :]
h = self.critic.encoder(obs)
next_h = self.transition_model.sample_prediction(torch.cat([h, action], dim=1))
if target_obs.dim() == 4:
# preprocess images to be in [-0.5, 0.5] range
target_obs = utils.preprocess_obs(target_obs)
rec_obs = self.decoder(next_h)
loss = F.mse_loss(target_obs, rec_obs)
self.encoder_optimizer.zero_grad()
self.decoder_optimizer.zero_grad()
loss.backward()
self.encoder_optimizer.step()
self.decoder_optimizer.step()
L.log('train_ae/ae_loss', loss, step)
self.decoder.log(L, step, log_freq=LOG_FREQ)
def update_contrastive(self, obs, action, next_obs, L, step):
latent = self.critic.encoder(obs)
next_latent = self.critic.encoder(next_obs)
loss = self.contrastive_loss(latent, action, next_latent)
self.encoder_optimizer.zero_grad()
self.decoder_optimizer.zero_grad()
loss.backward()
self.encoder_optimizer.step()
self.decoder_optimizer.step()
L.log('train_ae/contrastive_loss', loss, step)
def update_inverse(self, obs, action, next_obs, L, step):
non_final_mask = torch.tensor(tuple(map(lambda s: not (s == 0).all(), next_obs)), device=self.device).long() # hack
latent = self.critic.encoder(obs[non_final_mask])
next_latent = self.critic.encoder(next_obs[non_final_mask].to(self.device).float())
# pred_next_latent = self.transition_model(torch.cat([latent, action], dim=1))
# fpred_action = self.inverse_model(latent, pred_next_latent)
pred_action = self.inverse_model(torch.cat([latent, next_latent], dim=1))
loss = F.mse_loss(pred_action, action[non_final_mask]) # + F.mse_loss(fpred_action, action)
self.encoder_optimizer.zero_grad()
loss.backward()
self.encoder_optimizer.step()
L.log('train_ae/inverse_loss', loss, step)
def update(self, replay_buffer, L, step):
if self.decoder_type == 'inverse':
obs, action, reward, next_obs, not_done, k_obs = replay_buffer.sample(k=True)
else:
obs, action, _, reward, next_obs, not_done = replay_buffer.sample()
L.log('train/batch_reward', reward.mean(), step)
self.update_critic(obs, action, reward, next_obs, not_done, L, step)
if step % self.actor_update_freq == 0:
self.update_actor_and_alpha(obs, L, step)
if step % self.critic_target_update_freq == 0:
utils.soft_update_params(
self.critic.Q1, self.critic_target.Q1, self.critic_tau
)
utils.soft_update_params(
self.critic.Q2, self.critic_target.Q2, self.critic_tau
)
utils.soft_update_params(
self.critic.encoder, self.critic_target.encoder,
self.encoder_tau
)
if self.decoder is not None and step % self.decoder_update_freq == 0: # decoder_type is pixel
self.update_decoder(obs, action, next_obs, L, step)
if self.decoder_type == 'contrastive':
self.update_contrastive(obs, action, next_obs, L, step)
elif self.decoder_type == 'inverse':
self.update_inverse(obs, action, k_obs, L, step)
def save(self, model_dir, step):
torch.save(
self.actor.state_dict(), '%s/actor_%s.pt' % (model_dir, step)
)
torch.save(
self.critic.state_dict(), '%s/critic_%s.pt' % (model_dir, step)
)
if self.decoder is not None:
torch.save(
self.decoder.state_dict(),
'%s/decoder_%s.pt' % (model_dir, step)
)
def load(self, model_dir, step):
self.actor.load_state_dict(
torch.load('%s/actor_%s.pt' % (model_dir, step))
)
self.critic.load_state_dict(
torch.load('%s/critic_%s.pt' % (model_dir, step))
)
if self.decoder is not None:
self.decoder.load_state_dict(
torch.load('%s/decoder_%s.pt' % (model_dir, step))
)