223 lines
6.8 KiB
Python
223 lines
6.8 KiB
Python
"""
|
|
An interface for asynchronous vectorized environments.
|
|
"""
|
|
|
|
|
|
import ctypes
|
|
from abc import ABC, abstractmethod
|
|
from multiprocessing import Pipe, Array, Process
|
|
|
|
import gym
|
|
import numpy as np
|
|
from baselines import logger
|
|
|
|
_NP_TO_CT = {np.float32: ctypes.c_float,
|
|
np.int32: ctypes.c_int32,
|
|
np.int8: ctypes.c_int8,
|
|
np.uint8: ctypes.c_char,
|
|
np.bool: ctypes.c_bool}
|
|
_CT_TO_NP = {v: k for k, v in _NP_TO_CT.items()}
|
|
|
|
|
|
class CloudpickleWrapper(object):
|
|
"""
|
|
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
|
|
"""
|
|
|
|
def __init__(self, x):
|
|
self.x = x
|
|
|
|
def __getstate__(self):
|
|
import cloudpickle
|
|
return cloudpickle.dumps(self.x)
|
|
|
|
def __setstate__(self, ob):
|
|
import pickle
|
|
self.x = pickle.loads(ob)
|
|
|
|
|
|
class VecEnv(ABC):
|
|
"""
|
|
An abstract asynchronous, vectorized environment.
|
|
"""
|
|
|
|
def __init__(self, num_envs, observation_space, action_space):
|
|
self.num_envs = num_envs
|
|
self.observation_space = observation_space
|
|
self.action_space = action_space
|
|
|
|
@abstractmethod
|
|
def reset(self):
|
|
"""
|
|
Reset all the environments and return an array of
|
|
observations, or a tuple of observation arrays.
|
|
|
|
If step_async is still doing work, that work will
|
|
be cancelled and step_wait() should not be called
|
|
until step_async() is invoked again.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def step_async(self, actions):
|
|
"""
|
|
Tell all the environments to start taking a step
|
|
with the given actions.
|
|
Call step_wait() to get the results of the step.
|
|
|
|
You should not call this if a step_async run is
|
|
already pending.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def step_wait(self):
|
|
"""
|
|
Wait for the step taken with step_async().
|
|
|
|
Returns (obs, rews, dones, infos):
|
|
- obs: an array of observations, or a tuple of
|
|
arrays of observations.
|
|
- rews: an array of rewards
|
|
- dones: an array of "episode done" booleans
|
|
- infos: a sequence of info objects
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def close(self):
|
|
"""
|
|
Clean up the environments' resources.
|
|
"""
|
|
pass
|
|
|
|
def step(self, actions):
|
|
self.step_async(actions)
|
|
return self.step_wait()
|
|
|
|
def render(self):
|
|
logger.warn('Render not defined for %s' % self)
|
|
|
|
|
|
class ShmemVecEnv(VecEnv):
|
|
"""
|
|
An AsyncEnv that uses multiprocessing to run multiple
|
|
environments in parallel.
|
|
"""
|
|
|
|
def __init__(self, env_fns, spaces=None):
|
|
"""
|
|
If you don't specify observation_space, we'll have to create a dummy
|
|
environment to get it.
|
|
"""
|
|
if spaces:
|
|
observation_space, action_space = spaces
|
|
else:
|
|
logger.log('Creating dummy env object to get spaces')
|
|
with logger.scoped_configure(format_strs=[]):
|
|
dummy = env_fns[0]()
|
|
observation_space, action_space = dummy.observation_space, dummy.action_space
|
|
dummy.close()
|
|
del dummy
|
|
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
|
|
|
|
obs_spaces = observation_space.spaces if isinstance(self.observation_space, gym.spaces.Tuple) else (
|
|
self.observation_space,)
|
|
self.obs_bufs = [tuple(Array(_NP_TO_CT[s.dtype.type], int(np.prod(s.shape))) for s in obs_spaces) for _ in
|
|
env_fns]
|
|
self.obs_shapes = [s.shape for s in obs_spaces]
|
|
self.obs_dtypes = [s.dtype for s in obs_spaces]
|
|
|
|
self.parent_pipes = []
|
|
self.procs = []
|
|
for env_fn, obs_buf in zip(env_fns, self.obs_bufs):
|
|
wrapped_fn = CloudpickleWrapper(env_fn)
|
|
parent_pipe, child_pipe = Pipe()
|
|
proc = Process(target=_subproc_worker,
|
|
args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes))
|
|
proc.daemon = True
|
|
self.procs.append(proc)
|
|
self.parent_pipes.append(parent_pipe)
|
|
proc.start()
|
|
child_pipe.close()
|
|
self.waiting_step = False
|
|
|
|
def reset(self):
|
|
if self.waiting_step:
|
|
logger.warn('Called reset() while waiting for the step to complete')
|
|
self.step_wait()
|
|
for pipe in self.parent_pipes:
|
|
pipe.send(('reset', None))
|
|
return self._decode_obses([pipe.recv() for pipe in self.parent_pipes])
|
|
|
|
def step_async(self, actions):
|
|
assert len(actions) == len(self.parent_pipes)
|
|
for pipe, act in zip(self.parent_pipes, actions):
|
|
pipe.send(('step', act))
|
|
|
|
def step_wait(self):
|
|
outs = [pipe.recv() for pipe in self.parent_pipes]
|
|
obs, rews, dones, infos = zip(*outs)
|
|
return self._decode_obses(obs), np.array(rews), np.array(dones), infos
|
|
|
|
def close(self):
|
|
if self.waiting_step:
|
|
self.step_wait()
|
|
for pipe in self.parent_pipes:
|
|
pipe.send(('close', None))
|
|
for pipe in self.parent_pipes:
|
|
pipe.recv()
|
|
pipe.close()
|
|
for proc in self.procs:
|
|
proc.join()
|
|
|
|
def _decode_obses(self, obs):
|
|
"""
|
|
Turn the observation responses into a single numpy
|
|
array, possibly via shared memory.
|
|
"""
|
|
obs = []
|
|
for i, shape in enumerate(self.obs_shapes):
|
|
bufs = [b[i] for b in self.obs_bufs]
|
|
o = [np.frombuffer(b.get_obj(), dtype=self.obs_dtypes[i]).reshape(shape) for b in bufs]
|
|
obs.append(np.array(o))
|
|
return tuple(obs) if len(obs) > 1 else obs[0]
|
|
|
|
|
|
def _subproc_worker(pipe, parent_pipe, env_fn_wrapper, obs_buf, obs_shape):
|
|
"""
|
|
Control a single environment instance using IPC and
|
|
shared memory.
|
|
|
|
If obs_buf is not None, it is a shared-memory buffer
|
|
for communicating observations.
|
|
"""
|
|
|
|
def _write_obs(obs):
|
|
if not isinstance(obs, tuple):
|
|
obs = (obs,)
|
|
for o, b, s in zip(obs, obs_buf, obs_shape):
|
|
dst = b.get_obj()
|
|
dst_np = np.frombuffer(dst, dtype=_CT_TO_NP[dst._type_]).reshape(s) # pylint: disable=W0212
|
|
np.copyto(dst_np, o)
|
|
|
|
env = env_fn_wrapper.x()
|
|
parent_pipe.close()
|
|
try:
|
|
while True:
|
|
cmd, data = pipe.recv()
|
|
if cmd == 'reset':
|
|
pipe.send(_write_obs(env.reset()))
|
|
elif cmd == 'step':
|
|
obs, reward, done, info = env.step(data)
|
|
if done:
|
|
obs = env.reset()
|
|
pipe.send((_write_obs(obs), reward, done, info))
|
|
elif cmd == 'close':
|
|
pipe.send(None)
|
|
break
|
|
else:
|
|
raise RuntimeError('Got unrecognized cmd %s' % cmd)
|
|
finally:
|
|
env.close()
|