DB/rollouts.py
2023-05-29 13:37:22 +02:00

194 lines
8.9 KiB
Python

from collections import deque, defaultdict
import numpy as np
from mpi4py import MPI
# from utils import add_noise
from recorder import Recorder
class Rollout(object):
def __init__(self, ob_space, ac_space, nenvs, nsteps_per_seg, nsegs_per_env, nlumps, envs, policy,
int_rew_coeff, ext_rew_coeff, record_rollouts, dynamic_bottleneck): #, noisy_box, noisy_p):
# int_rew_coeff=1.0, ext_rew_coeff=0.0, record_rollouts=True
self.nenvs = nenvs # 128/64
self.nsteps_per_seg = nsteps_per_seg # 128
self.nsegs_per_env = nsegs_per_env # 1
self.nsteps = self.nsteps_per_seg * self.nsegs_per_env # 128
self.ob_space = ob_space # Box (84,84,4)
self.ac_space = ac_space # Discrete(4)
self.nlumps = nlumps # 1
self.lump_stride = nenvs // self.nlumps # 128
self.envs = envs
self.policy = policy
self.dynamic_bottleneck = dynamic_bottleneck # Dynamic Bottleneck
self.reward_fun = lambda ext_rew, int_rew: ext_rew_coeff * np.clip(ext_rew, -1., 1.) + int_rew_coeff * int_rew
self.buf_vpreds = np.empty((nenvs, self.nsteps), np.float32)
self.buf_nlps = np.empty((nenvs, self.nsteps), np.float32)
self.buf_rews = np.empty((nenvs, self.nsteps), np.float32)
self.buf_ext_rews = np.empty((nenvs, self.nsteps), np.float32)
self.buf_acs = np.empty((nenvs, self.nsteps, *self.ac_space.shape), self.ac_space.dtype)
self.buf_obs = np.empty((nenvs, self.nsteps, *self.ob_space.shape), self.ob_space.dtype)
self.buf_obs_last = np.empty((nenvs, self.nsegs_per_env, *self.ob_space.shape), np.float32)
self.buf_news = np.zeros((nenvs, self.nsteps), np.float32)
self.buf_new_last = self.buf_news[:, 0, ...].copy()
self.buf_vpred_last = self.buf_vpreds[:, 0, ...].copy()
self.env_results = [None] * self.nlumps
self.int_rew = np.zeros((nenvs,), np.float32)
self.recorder = Recorder(nenvs=self.nenvs, nlumps=self.nlumps) if record_rollouts else None
self.statlists = defaultdict(lambda: deque([], maxlen=100))
self.stats = defaultdict(float)
self.best_ext_ret = None
self.all_visited_rooms = []
self.all_scores = []
self.step_count = 0
# add bai. Noise box in observation
# self.noisy_box = noisy_box
# self.noisy_p = noisy_p
def collect_rollout(self):
self.ep_infos_new = []
for t in range(self.nsteps):
self.rollout_step()
self.calculate_reward()
self.update_info()
def calculate_reward(self): # Reward comes from Dynamic Bottleneck
db_rew = self.dynamic_bottleneck.calculate_db_reward(
ob=self.buf_obs, last_ob=self.buf_obs_last, acs=self.buf_acs)
self.buf_rews[:] = self.reward_fun(int_rew=db_rew, ext_rew=self.buf_ext_rews)
def rollout_step(self):
t = self.step_count % self.nsteps
s = t % self.nsteps_per_seg
for l in range(self.nlumps): # nclumps=1
obs, prevrews, news, infos = self.env_get(l)
# if t > 0:
# prev_feat = self.prev_feat[l]
# prev_acs = self.prev_acs[l]
for info in infos:
epinfo = info.get('episode', {})
mzepinfo = info.get('mz_episode', {})
retroepinfo = info.get('retro_episode', {})
epinfo.update(mzepinfo)
epinfo.update(retroepinfo)
if epinfo:
if "n_states_visited" in info:
epinfo["n_states_visited"] = info["n_states_visited"]
epinfo["states_visited"] = info["states_visited"]
self.ep_infos_new.append((self.step_count, epinfo))
# slice(0,128) lump_stride=128
sli = slice(l * self.lump_stride, (l + 1) * self.lump_stride)
acs, vpreds, nlps = self.policy.get_ac_value_nlp(obs)
self.env_step(l, acs)
# self.prev_feat[l] = dyn_feat
# self.prev_acs[l] = acs
self.buf_obs[sli, t] = obs # obs.shape=(128,84,84,4)
self.buf_news[sli, t] = news # shape=(128,) True/False
self.buf_vpreds[sli, t] = vpreds # shape=(128,)
self.buf_nlps[sli, t] = nlps # -log pi(a|s), shape=(128,)
self.buf_acs[sli, t] = acs # shape=(128,)
if t > 0:
self.buf_ext_rews[sli, t - 1] = prevrews # prevrews.shape=(128,)
if self.recorder is not None:
self.recorder.record(timestep=self.step_count, lump=l, acs=acs, infos=infos, int_rew=self.int_rew[sli],
ext_rew=prevrews, news=news)
import matplotlib.pyplot as plt
from PIL import Image
x = self.buf_obs[sli, t][5][:,:,0]
img = Image.fromarray(x)
img.save('image1.png')
x = self.buf_obs[sli, t][5][:,:,1]
img = Image.fromarray(x)
img.save('image2.png')
x = self.buf_obs[sli, t][5][:,:,2]
img = Image.fromarray(x)
img.save('image3.png')
x = self.buf_obs[sli, t][5][:,:,3]
img = Image.fromarray(x)
img.save('image4.png')
self.step_count += 1
if s == self.nsteps_per_seg - 1: # nsteps_per_seg=128
for l in range(self.nlumps): # nclumps=1
sli = slice(l * self.lump_stride, (l + 1) * self.lump_stride)
nextobs, ext_rews, nextnews, _ = self.env_get(l)
self.buf_obs_last[sli, t // self.nsteps_per_seg] = nextobs
if t == self.nsteps - 1: # t=127
self.buf_new_last[sli] = nextnews
self.buf_ext_rews[sli, t] = ext_rews #
_, self.buf_vpred_last[sli], _ = self.policy.get_ac_value_nlp(nextobs) #
def update_info(self):
all_ep_infos = MPI.COMM_WORLD.allgather(self.ep_infos_new)
all_ep_infos = sorted(sum(all_ep_infos, []), key=lambda x: x[0])
if all_ep_infos:
all_ep_infos = [i_[1] for i_ in all_ep_infos] # remove the step_count
keys_ = all_ep_infos[0].keys()
all_ep_infos = {k: [i[k] for i in all_ep_infos] for k in keys_}
# all_ep_infos: {'r': [0.0, 0.0, 0.0], 'l': [124, 125, 127], 't': [6.60745, 12.034875, 10.772788]}
self.statlists['eprew'].extend(all_ep_infos['r'])
self.stats['eprew_recent'] = np.mean(all_ep_infos['r'])
self.statlists['eplen'].extend(all_ep_infos['l'])
self.stats['epcount'] += len(all_ep_infos['l'])
self.stats['tcount'] += sum(all_ep_infos['l'])
if 'visited_rooms' in keys_:
# Montezuma specific logging.
self.stats['visited_rooms'] = sorted(list(set.union(*all_ep_infos['visited_rooms'])))
self.stats['pos_count'] = np.mean(all_ep_infos['pos_count'])
self.all_visited_rooms.extend(self.stats['visited_rooms'])
self.all_scores.extend(all_ep_infos["r"])
self.all_scores = sorted(list(set(self.all_scores)))
self.all_visited_rooms = sorted(list(set(self.all_visited_rooms)))
if MPI.COMM_WORLD.Get_rank() == 0:
print("All visited rooms")
print(self.all_visited_rooms)
print("All scores")
print(self.all_scores)
if 'levels' in keys_:
# Retro logging
temp = sorted(list(set.union(*all_ep_infos['levels'])))
self.all_visited_rooms.extend(temp)
self.all_visited_rooms = sorted(list(set(self.all_visited_rooms)))
if MPI.COMM_WORLD.Get_rank() == 0:
print("All visited levels")
print(self.all_visited_rooms)
current_max = np.max(all_ep_infos['r'])
else:
current_max = None
self.ep_infos_new = []
# best_ext_ret
if current_max is not None:
if (self.best_ext_ret is None) or (current_max > self.best_ext_ret):
self.best_ext_ret = current_max
self.current_max = current_max
def env_step(self, l, acs):
self.envs[l].step_async(acs)
self.env_results[l] = None
def env_get(self, l):
if self.step_count == 0:
ob = self.envs[l].reset()
out = self.env_results[l] = (ob, None, np.ones(self.lump_stride, bool), {})
else:
if self.env_results[l] is None:
out = self.env_results[l] = self.envs[l].step_wait()
else:
out = self.env_results[l]
return out