261 lines
12 KiB
Python
261 lines
12 KiB
Python
|
import time
|
||
|
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
from baselines.common import explained_variance
|
||
|
from baselines.common.mpi_moments import mpi_moments
|
||
|
from baselines.common.running_mean_std import RunningMeanStd
|
||
|
from mpi4py import MPI
|
||
|
from mpi_utils import MpiAdamOptimizer
|
||
|
from rollouts import Rollout
|
||
|
from utils import bcast_tf_vars_from_root, get_mean_and_std
|
||
|
from vec_env import ShmemVecEnv as VecEnv
|
||
|
|
||
|
getsess = tf.get_default_session
|
||
|
|
||
|
|
||
|
class PpoOptimizer(object):
|
||
|
envs = None
|
||
|
|
||
|
def __init__(self, *, scope, ob_space, ac_space, stochpol, ent_coef, gamma, lam, nepochs, lr, cliprange,
|
||
|
nminibatches, normrew, normadv, use_news, ext_coeff, int_coeff, nsteps_per_seg, nsegs_per_env,
|
||
|
dynamic_bottleneck):
|
||
|
self.dynamic_bottleneck = dynamic_bottleneck
|
||
|
with tf.variable_scope(scope):
|
||
|
self.use_recorder = True
|
||
|
self.n_updates = 0
|
||
|
self.scope = scope
|
||
|
self.ob_space = ob_space # Box(84,84,4)
|
||
|
self.ac_space = ac_space # Discrete(4)
|
||
|
self.stochpol = stochpol # cnn policy
|
||
|
self.nepochs = nepochs # 3
|
||
|
self.lr = lr # 1e-4
|
||
|
self.cliprange = cliprange # 0.1
|
||
|
self.nsteps_per_seg = nsteps_per_seg # 128
|
||
|
self.nsegs_per_env = nsegs_per_env # 1
|
||
|
self.nminibatches = nminibatches # 8
|
||
|
self.gamma = gamma # 0.99
|
||
|
self.lam = lam # 0.99
|
||
|
self.normrew = normrew # 1
|
||
|
self.normadv = normadv # 1
|
||
|
self.use_news = use_news # False
|
||
|
self.ext_coeff = ext_coeff # 0.0
|
||
|
self.int_coeff = int_coeff # 1.0
|
||
|
self.ph_adv = tf.placeholder(tf.float32, [None, None])
|
||
|
self.ph_ret = tf.placeholder(tf.float32, [None, None])
|
||
|
self.ph_rews = tf.placeholder(tf.float32, [None, None])
|
||
|
self.ph_oldnlp = tf.placeholder(tf.float32, [None, None]) # -log pi(a|s)
|
||
|
self.ph_oldvpred = tf.placeholder(tf.float32, [None, None])
|
||
|
self.ph_lr = tf.placeholder(tf.float32, [])
|
||
|
self.ph_cliprange = tf.placeholder(tf.float32, [])
|
||
|
neglogpac = self.stochpol.pd.neglogp(self.stochpol.ph_ac)
|
||
|
entropy = tf.reduce_mean(self.stochpol.pd.entropy())
|
||
|
vpred = self.stochpol.vpred
|
||
|
|
||
|
vf_loss = 0.5 * tf.reduce_mean((vpred - self.ph_ret) ** 2)
|
||
|
ratio = tf.exp(self.ph_oldnlp - neglogpac) # p_new / p_old
|
||
|
negadv = - self.ph_adv
|
||
|
pg_losses1 = negadv * ratio
|
||
|
pg_losses2 = negadv * tf.clip_by_value(ratio, 1.0 - self.ph_cliprange, 1.0 + self.ph_cliprange)
|
||
|
pg_loss_surr = tf.maximum(pg_losses1, pg_losses2)
|
||
|
pg_loss = tf.reduce_mean(pg_loss_surr)
|
||
|
ent_loss = (- ent_coef) * entropy
|
||
|
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - self.ph_oldnlp))
|
||
|
clipfrac = tf.reduce_mean(tf.to_float(tf.abs(pg_losses2 - pg_loss_surr) > 1e-6))
|
||
|
|
||
|
self.total_loss = pg_loss + ent_loss + vf_loss
|
||
|
self.to_report = {'tot': self.total_loss, 'pg': pg_loss, 'vf': vf_loss, 'ent': entropy, 'approxkl': approxkl, 'clipfrac': clipfrac}
|
||
|
|
||
|
# add bai
|
||
|
self.db_loss = None
|
||
|
|
||
|
def start_interaction(self, env_fns, dynamic_bottleneck, nlump=2):
|
||
|
self.loss_names, self._losses = zip(*list(self.to_report.items()))
|
||
|
|
||
|
params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
|
||
|
params_db = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="DB")
|
||
|
print("***total params:", np.sum([np.prod(v.get_shape().as_list()) for v in params])) # idf:10,172,133
|
||
|
print("***DB params:", np.sum([np.prod(v.get_shape().as_list()) for v in params_db])) # idf:10,172,133
|
||
|
|
||
|
if MPI.COMM_WORLD.Get_size() > 1:
|
||
|
trainer = MpiAdamOptimizer(learning_rate=self.ph_lr, comm=MPI.COMM_WORLD)
|
||
|
else:
|
||
|
trainer = tf.train.AdamOptimizer(learning_rate=self.ph_lr)
|
||
|
gradsandvars = trainer.compute_gradients(self.total_loss, params) # 计算梯度
|
||
|
self._train = trainer.apply_gradients(gradsandvars)
|
||
|
|
||
|
# Train DB
|
||
|
# gradsandvars_db = trainer.compute_gradients(self.db_loss, params_db)
|
||
|
# self._train_db = trainer.apply_gradients(gradsandvars_db)
|
||
|
|
||
|
# Train DB with gradient clipping
|
||
|
gradients_db, variables_db = zip(*trainer.compute_gradients(self.db_loss, params_db))
|
||
|
gradients_db, self.norm_var = tf.clip_by_global_norm(gradients_db, 50.0)
|
||
|
self._train_db = trainer.apply_gradients(zip(gradients_db, variables_db))
|
||
|
|
||
|
if MPI.COMM_WORLD.Get_rank() == 0:
|
||
|
getsess().run(tf.variables_initializer(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)))
|
||
|
bcast_tf_vars_from_root(getsess(), tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES))
|
||
|
|
||
|
self.all_visited_rooms = []
|
||
|
self.all_scores = []
|
||
|
self.nenvs = nenvs = len(env_fns) # 128
|
||
|
self.nlump = nlump # 1
|
||
|
self.lump_stride = nenvs // self.nlump # 128/1=128
|
||
|
self.envs = [
|
||
|
VecEnv(env_fns[l * self.lump_stride: (l + 1) * self.lump_stride], spaces=[self.ob_space, self.ac_space]) for
|
||
|
l in range(self.nlump)]
|
||
|
|
||
|
self.rollout = Rollout(ob_space=self.ob_space, ac_space=self.ac_space, nenvs=nenvs,
|
||
|
nsteps_per_seg=self.nsteps_per_seg,
|
||
|
nsegs_per_env=self.nsegs_per_env, nlumps=self.nlump,
|
||
|
envs=self.envs,
|
||
|
policy=self.stochpol,
|
||
|
int_rew_coeff=self.int_coeff,
|
||
|
ext_rew_coeff=self.ext_coeff,
|
||
|
record_rollouts=self.use_recorder,
|
||
|
dynamic_bottleneck=dynamic_bottleneck)
|
||
|
|
||
|
self.buf_advs = np.zeros((nenvs, self.rollout.nsteps), np.float32)
|
||
|
self.buf_rets = np.zeros((nenvs, self.rollout.nsteps), np.float32)
|
||
|
|
||
|
# add bai. Dynamic Bottleneck Reward Normalization
|
||
|
if self.normrew:
|
||
|
self.rff = RewardForwardFilter(self.gamma)
|
||
|
self.rff_rms = RunningMeanStd()
|
||
|
|
||
|
self.step_count = 0
|
||
|
self.t_last_update = time.time()
|
||
|
self.t_start = time.time()
|
||
|
|
||
|
def stop_interaction(self):
|
||
|
for env in self.envs:
|
||
|
env.close()
|
||
|
|
||
|
def calculate_advantages(self, rews, use_news, gamma, lam):
|
||
|
nsteps = self.rollout.nsteps
|
||
|
lastgaelam = 0
|
||
|
for t in range(nsteps - 1, -1, -1): # nsteps-2 ... 0
|
||
|
nextnew = self.rollout.buf_news[:, t + 1] if t + 1 < nsteps else self.rollout.buf_new_last
|
||
|
if not use_news:
|
||
|
nextnew = 0
|
||
|
nextvals = self.rollout.buf_vpreds[:, t + 1] if t + 1 < nsteps else self.rollout.buf_vpred_last
|
||
|
nextnotnew = 1 - nextnew
|
||
|
delta = rews[:, t] + gamma * nextvals * nextnotnew - self.rollout.buf_vpreds[:, t]
|
||
|
self.buf_advs[:, t] = lastgaelam = delta + gamma * lam * nextnotnew * lastgaelam
|
||
|
self.buf_rets[:] = self.buf_advs + self.rollout.buf_vpreds
|
||
|
|
||
|
def update(self):
|
||
|
# add bai. use dynamic bottleneck
|
||
|
if self.normrew:
|
||
|
rffs = np.array([self.rff.update(rew) for rew in self.rollout.buf_rews.T])
|
||
|
rffs_mean, rffs_std, rffs_count = mpi_moments(rffs.ravel())
|
||
|
self.rff_rms.update_from_moments(rffs_mean, rffs_std ** 2, rffs_count)
|
||
|
rews = self.rollout.buf_rews / np.sqrt(self.rff_rms.var) # shape=(128,128)
|
||
|
else:
|
||
|
rews = np.copy(self.rollout.buf_rews)
|
||
|
|
||
|
self.calculate_advantages(rews=rews, use_news=self.use_news, gamma=self.gamma, lam=self.lam)
|
||
|
|
||
|
info = dict(
|
||
|
advmean=self.buf_advs.mean(),
|
||
|
advstd=self.buf_advs.std(),
|
||
|
retmean=self.buf_rets.mean(),
|
||
|
retstd=self.buf_rets.std(),
|
||
|
vpredmean=self.rollout.buf_vpreds.mean(),
|
||
|
vpredstd=self.rollout.buf_vpreds.std(),
|
||
|
ev=explained_variance(self.rollout.buf_vpreds.ravel(), self.buf_rets.ravel()),
|
||
|
DB_rew=np.mean(self.rollout.buf_rews), # add bai.
|
||
|
DB_rew_norm=np.mean(rews), # add bai.
|
||
|
recent_best_ext_ret=self.rollout.current_max
|
||
|
)
|
||
|
if self.rollout.best_ext_ret is not None:
|
||
|
info['best_ext_ret'] = self.rollout.best_ext_ret
|
||
|
|
||
|
if self.normadv:
|
||
|
m, s = get_mean_and_std(self.buf_advs)
|
||
|
self.buf_advs = (self.buf_advs - m) / (s + 1e-7)
|
||
|
envsperbatch = (self.nenvs * self.nsegs_per_env) // self.nminibatches
|
||
|
envsperbatch = max(1, envsperbatch)
|
||
|
envinds = np.arange(self.nenvs * self.nsegs_per_env)
|
||
|
|
||
|
def resh(x):
|
||
|
if self.nsegs_per_env == 1:
|
||
|
return x
|
||
|
sh = x.shape
|
||
|
return x.reshape((sh[0] * self.nsegs_per_env, self.nsteps_per_seg) + sh[2:])
|
||
|
|
||
|
ph_buf = [
|
||
|
(self.stochpol.ph_ac, resh(self.rollout.buf_acs)),
|
||
|
(self.ph_rews, resh(self.rollout.buf_rews)),
|
||
|
(self.ph_oldvpred, resh(self.rollout.buf_vpreds)),
|
||
|
(self.ph_oldnlp, resh(self.rollout.buf_nlps)),
|
||
|
(self.stochpol.ph_ob, resh(self.rollout.buf_obs)), # numpy shape=(128,128,84,84,4)
|
||
|
(self.ph_ret, resh(self.buf_rets)), #
|
||
|
(self.ph_adv, resh(self.buf_advs)), #
|
||
|
]
|
||
|
ph_buf.extend([
|
||
|
(self.dynamic_bottleneck.last_ob, # shape=(128,1,84,84,4)
|
||
|
self.rollout.buf_obs_last.reshape([self.nenvs * self.nsegs_per_env, 1, *self.ob_space.shape]))
|
||
|
])
|
||
|
mblossvals = [] #
|
||
|
for _ in range(self.nepochs): # nepochs = 3
|
||
|
np.random.shuffle(envinds) # envinds = [0,1,2,...,127]
|
||
|
# nenvs=128, nsgs_per_env=1, envsperbatch=16
|
||
|
for start in range(0, self.nenvs * self.nsegs_per_env, envsperbatch):
|
||
|
end = start + envsperbatch
|
||
|
mbenvinds = envinds[start:end]
|
||
|
fd = {ph: buf[mbenvinds] for (ph, buf) in ph_buf} # feed_dict
|
||
|
fd.update({self.ph_lr: self.lr, self.ph_cliprange: self.cliprange}) # , self.dynamic_bottleneck.l2_aux_loss_tf: l2_aux_loss_fd})
|
||
|
mblossvals.append(getsess().run(self._losses + (self._train,), fd)[:-1]) #
|
||
|
|
||
|
# gradient norm computation
|
||
|
# print("gradient norm:", getsess().run(self.norm_var, fd))
|
||
|
|
||
|
# momentum update DB parameters
|
||
|
print("Momentum Update DB Encoder")
|
||
|
getsess().run(self.dynamic_bottleneck.momentum_updates)
|
||
|
DB_loss_info = getsess().run(self.dynamic_bottleneck.loss_info, fd)
|
||
|
|
||
|
#
|
||
|
mblossvals = [mblossvals[0]]
|
||
|
info.update(zip(['opt_' + ln for ln in self.loss_names], np.mean([mblossvals[0]], axis=0)))
|
||
|
info["rank"] = MPI.COMM_WORLD.Get_rank()
|
||
|
self.n_updates += 1
|
||
|
info["n_updates"] = self.n_updates
|
||
|
info.update({dn: (np.mean(dvs) if len(dvs) > 0 else 0) for (dn, dvs) in self.rollout.statlists.items()})
|
||
|
info.update(self.rollout.stats)
|
||
|
if "states_visited" in info:
|
||
|
info.pop("states_visited")
|
||
|
tnow = time.time()
|
||
|
info["ups"] = 1. / (tnow - self.t_last_update)
|
||
|
info["total_secs"] = tnow - self.t_start
|
||
|
info['tps'] = MPI.COMM_WORLD.Get_size() * self.rollout.nsteps * self.nenvs / (tnow - self.t_last_update)
|
||
|
self.t_last_update = tnow
|
||
|
|
||
|
return info, DB_loss_info
|
||
|
|
||
|
def step(self):
|
||
|
self.rollout.collect_rollout()
|
||
|
update_info, DB_loss_info = self.update()
|
||
|
return {'update': update_info, "DB_loss_info": DB_loss_info}
|
||
|
|
||
|
def get_var_values(self):
|
||
|
return self.stochpol.get_var_values()
|
||
|
|
||
|
def set_var_values(self, vv):
|
||
|
self.stochpol.set_var_values(vv)
|
||
|
|
||
|
|
||
|
class RewardForwardFilter(object):
|
||
|
def __init__(self, gamma):
|
||
|
self.rewems = None
|
||
|
self.gamma = gamma
|
||
|
|
||
|
def update(self, rews):
|
||
|
if self.rewems is None:
|
||
|
self.rewems = rews
|
||
|
else:
|
||
|
self.rewems = self.rewems * self.gamma + rews
|
||
|
return self.rewems
|