2021-10-09 00:33:47 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
try:
|
|
|
|
from OpenGL import GLU
|
|
|
|
except:
|
|
|
|
print("no OpenGL.GLU")
|
|
|
|
import functools
|
|
|
|
import os.path as osp
|
|
|
|
from functools import partial
|
|
|
|
import os
|
|
|
|
import gym
|
2023-05-29 15:11:26 +00:00
|
|
|
import dmc2gym
|
|
|
|
|
|
|
|
import utils
|
2021-10-09 00:33:47 +00:00
|
|
|
import tensorflow as tf
|
|
|
|
from baselines import logger
|
|
|
|
from baselines.bench import Monitor
|
|
|
|
from baselines.common.atari_wrappers import NoopResetEnv, FrameStack
|
|
|
|
from mpi4py import MPI
|
|
|
|
|
2023-05-29 11:37:22 +00:00
|
|
|
from dynamic_bottleneck import DynamicBottleneck
|
2021-10-09 00:33:47 +00:00
|
|
|
from cnn_policy import CnnPolicy
|
|
|
|
from cppo_agent import PpoOptimizer
|
|
|
|
from utils import random_agent_ob_mean_std
|
|
|
|
from wrappers import MontezumaInfoWrapper, make_mario_env, make_robo_pong, make_robo_hockey, \
|
|
|
|
make_multi_pong, AddRandomStateToInfo, MaxAndSkipEnv, ProcessFrame84, ExtraTimeLimit, StickyActionEnv
|
|
|
|
import datetime
|
|
|
|
from wrappers import PixelNoiseWrapper, RandomBoxNoiseWrapper
|
|
|
|
import json
|
|
|
|
|
|
|
|
getsess = tf.get_default_session
|
|
|
|
|
|
|
|
def start_experiment(**args):
|
2023-05-29 11:37:22 +00:00
|
|
|
|
2021-10-09 00:33:47 +00:00
|
|
|
make_env = partial(make_env_all_params, add_monitor=True, args=args)
|
|
|
|
|
|
|
|
trainer = Trainer(make_env=make_env,
|
|
|
|
num_timesteps=args['num_timesteps'], hps=args,
|
|
|
|
envs_per_process=args['envs_per_process'])
|
|
|
|
log, tf_sess, saver, logger_dir = get_experiment_environment(**args)
|
|
|
|
with log, tf_sess:
|
|
|
|
logdir = logger.get_dir()
|
|
|
|
print("results will be saved to ", logdir)
|
|
|
|
trainer.train(saver, logger_dir)
|
|
|
|
|
|
|
|
class Trainer(object):
|
|
|
|
def __init__(self, make_env, hps, num_timesteps, envs_per_process):
|
|
|
|
self.make_env = make_env
|
|
|
|
self.hps = hps
|
|
|
|
self.envs_per_process = envs_per_process
|
|
|
|
self.num_timesteps = num_timesteps
|
|
|
|
self._set_env_vars()
|
|
|
|
|
|
|
|
self.policy = CnnPolicy(scope='pol',
|
|
|
|
ob_space=self.ob_space,
|
|
|
|
ac_space=self.ac_space,
|
|
|
|
hidsize=512,
|
|
|
|
feat_dim=512,
|
|
|
|
ob_mean=self.ob_mean,
|
|
|
|
ob_std=self.ob_std,
|
|
|
|
layernormalize=False,
|
|
|
|
nl=tf.nn.leaky_relu)
|
|
|
|
|
|
|
|
self.dynamic_bottleneck = DynamicBottleneck(
|
|
|
|
policy=self.policy, feat_dim=512, tau=hps['momentum_tau'], loss_kl_weight=hps['loss_kl_weight'],
|
|
|
|
loss_nce_weight=hps['loss_nce_weight'], loss_l2_weight=hps['loss_l2_weight'], aug=hps['aug'])
|
|
|
|
|
|
|
|
self.agent = PpoOptimizer(
|
|
|
|
scope='ppo',
|
|
|
|
ob_space=self.ob_space,
|
|
|
|
ac_space=self.ac_space,
|
|
|
|
stochpol=self.policy,
|
|
|
|
use_news=hps['use_news'],
|
|
|
|
gamma=hps['gamma'],
|
|
|
|
lam=hps["lambda"],
|
|
|
|
nepochs=hps['nepochs'],
|
|
|
|
nminibatches=hps['nminibatches'],
|
|
|
|
lr=hps['lr'],
|
|
|
|
cliprange=0.1,
|
|
|
|
nsteps_per_seg=hps['nsteps_per_seg'],
|
|
|
|
nsegs_per_env=hps['nsegs_per_env'],
|
|
|
|
ent_coef=hps['ent_coeff'],
|
|
|
|
normrew=hps['norm_rew'],
|
|
|
|
normadv=hps['norm_adv'],
|
|
|
|
ext_coeff=hps['ext_coeff'],
|
|
|
|
int_coeff=hps['int_coeff'],
|
|
|
|
dynamic_bottleneck=self.dynamic_bottleneck
|
|
|
|
)
|
|
|
|
|
|
|
|
self.agent.to_report['db'] = tf.reduce_mean(self.dynamic_bottleneck.loss)
|
|
|
|
self.agent.total_loss += self.agent.to_report['db']
|
|
|
|
|
|
|
|
self.agent.db_loss = tf.reduce_mean(self.dynamic_bottleneck.loss)
|
|
|
|
|
|
|
|
self.agent.to_report['feat_var'] = tf.reduce_mean(tf.nn.moments(self.dynamic_bottleneck.features, [0, 1])[1])
|
|
|
|
|
|
|
|
def _set_env_vars(self):
|
|
|
|
env = self.make_env(0, add_monitor=False)
|
|
|
|
# ob_space.shape=(84, 84, 4) ac_space.shape=Discrete(4)
|
|
|
|
self.ob_space, self.ac_space = env.observation_space, env.action_space
|
|
|
|
self.ob_mean, self.ob_std = random_agent_ob_mean_std(env)
|
|
|
|
del env
|
|
|
|
self.envs = [functools.partial(self.make_env, i) for i in range(self.envs_per_process)]
|
|
|
|
|
|
|
|
def train(self, saver, logger_dir):
|
|
|
|
self.agent.start_interaction(self.envs, nlump=self.hps['nlumps'], dynamic_bottleneck=self.dynamic_bottleneck)
|
|
|
|
previous_saved_tcount = 0
|
|
|
|
|
|
|
|
# add bai. initialize IB parameters
|
|
|
|
print("***Init Momentum Network in Dynamic-Bottleneck.")
|
|
|
|
getsess().run(self.dynamic_bottleneck.init_updates)
|
|
|
|
|
|
|
|
while True:
|
|
|
|
info = self.agent.step() #
|
|
|
|
if info['DB_loss_info']: # add bai. for debug
|
|
|
|
logger.logkvs(info['DB_loss_info'])
|
|
|
|
if info['update']:
|
|
|
|
logger.logkvs(info['update'])
|
|
|
|
logger.dumpkvs()
|
|
|
|
if self.hps["save_period"] and (int(self.agent.rollout.stats['tcount'] / self.hps["save_freq"]) > previous_saved_tcount):
|
|
|
|
previous_saved_tcount += 1
|
|
|
|
save_path = saver.save(tf.get_default_session(), os.path.join(logger_dir, "model_"+str(previous_saved_tcount)+".ckpt"))
|
|
|
|
print("Periodically model saved in path:", save_path)
|
2023-05-29 11:37:22 +00:00
|
|
|
if self.agent.rollout.stats['tcount'] %10000: #self.agent.rollout.stats['tcount'] > self.num_timesteps:
|
2021-10-09 00:33:47 +00:00
|
|
|
save_path = saver.save(tf.get_default_session(), os.path.join(logger_dir, "model_last.ckpt"))
|
|
|
|
print("Model saved in path:", save_path)
|
2023-05-29 11:37:22 +00:00
|
|
|
#break
|
2021-10-09 00:33:47 +00:00
|
|
|
|
|
|
|
self.agent.stop_interaction()
|
|
|
|
|
|
|
|
|
|
|
|
def make_env_all_params(rank, add_monitor, args):
|
2023-05-29 15:11:26 +00:00
|
|
|
env = dmc2gym.make(
|
|
|
|
domain_name='cartpole',
|
|
|
|
task_name='swingup',
|
|
|
|
seed=args["seed"],
|
|
|
|
visualize_reward=False,
|
|
|
|
from_pixels='pixel',
|
|
|
|
height=84,
|
|
|
|
width=84,
|
|
|
|
frame_skip=4,
|
|
|
|
img_source=args["img_source"],
|
|
|
|
resource_files=args["resource_files"],
|
|
|
|
total_frames=args["total_frames"]
|
|
|
|
)
|
|
|
|
env.seed(args["seed"])
|
|
|
|
|
|
|
|
env = utils.FrameStack(env, k=4)
|
|
|
|
|
|
|
|
"""
|
2021-10-09 00:33:47 +00:00
|
|
|
if args["env_kind"] == 'atari':
|
|
|
|
env = gym.make(args['env'])
|
|
|
|
assert 'NoFrameskip' in env.spec.id
|
|
|
|
if args["stickyAtari"]: #
|
|
|
|
env._max_episode_steps = args['max_episode_steps'] * 4
|
|
|
|
env = StickyActionEnv(env)
|
|
|
|
else:
|
|
|
|
env = NoopResetEnv(env, noop_max=args['noop_max'])
|
|
|
|
env = MaxAndSkipEnv(env, skip=4) #
|
|
|
|
if args['pixelNoise']: # add pixel noise
|
|
|
|
env = PixelNoiseWrapper(env)
|
|
|
|
if args['randomBoxNoise']:
|
|
|
|
env = RandomBoxNoiseWrapper(env)
|
|
|
|
env = ProcessFrame84(env, crop=False) #
|
|
|
|
env = FrameStack(env, 4) #
|
|
|
|
# env = ExtraTimeLimit(env, args['max_episode_steps'])
|
|
|
|
if not args["stickyAtari"]:
|
|
|
|
env = ExtraTimeLimit(env, args['max_episode_steps']) #
|
|
|
|
if 'Montezuma' in args['env']: #
|
|
|
|
env = MontezumaInfoWrapper(env)
|
|
|
|
env = AddRandomStateToInfo(env)
|
|
|
|
elif args["env_kind"] == 'mario': #
|
|
|
|
env = make_mario_env()
|
|
|
|
elif args["env_kind"] == "retro_multi": #
|
|
|
|
env = make_multi_pong()
|
|
|
|
elif args["env_kind"] == 'robopong':
|
|
|
|
if args["env"] == "pong":
|
|
|
|
env = make_robo_pong()
|
|
|
|
elif args["env"] == "hockey":
|
|
|
|
env = make_robo_hockey()
|
2023-05-29 15:11:26 +00:00
|
|
|
"""
|
2021-10-09 00:33:47 +00:00
|
|
|
if add_monitor:
|
|
|
|
env = Monitor(env, osp.join(logger.get_dir(), '%.2i' % rank))
|
|
|
|
return env
|
|
|
|
|
|
|
|
|
|
|
|
def get_experiment_environment(**args):
|
|
|
|
from utils import setup_mpi_gpus, setup_tensorflow_session
|
|
|
|
from baselines.common import set_global_seeds
|
|
|
|
from gym.utils.seeding import hash_seed
|
|
|
|
process_seed = args["seed"] + 1000 * MPI.COMM_WORLD.Get_rank()
|
|
|
|
process_seed = hash_seed(process_seed, max_bytes=4)
|
|
|
|
set_global_seeds(process_seed)
|
|
|
|
setup_mpi_gpus()
|
|
|
|
|
|
|
|
# log dir name
|
|
|
|
logger_dir = './logs/' + args["env"].replace("NoFrameskip-v4", "")
|
|
|
|
# logger_dir += "-KLloss-"+str(args["loss_kl_weight"])
|
|
|
|
# logger_dir += "-NCEloss-" + str(args["loss_nce_weight"])
|
|
|
|
# logger_dir += "-L2loss-" + str(args["loss_l2_weight"])
|
|
|
|
if args['pixelNoise'] is True:
|
|
|
|
logger_dir += "-pixelNoise"
|
|
|
|
if args['randomBoxNoise'] is True:
|
|
|
|
logger_dir += "-randomBoxNoise"
|
|
|
|
if args['stickyAtari'] is True:
|
|
|
|
logger_dir += "-stickyAtari"
|
|
|
|
if args["comments"] != "":
|
|
|
|
logger_dir += '-' + args["comments"]
|
|
|
|
logger_dir += datetime.datetime.now().strftime("-%m-%d-%H-%M-%S")
|
|
|
|
|
|
|
|
# write config
|
|
|
|
logger.configure(dir=logger_dir)
|
|
|
|
with open(os.path.join(logger_dir, 'parameters.txt'), 'w') as f:
|
|
|
|
f.write("\n".join([str(x[0]) + ": " + str(x[1]) for x in args.items()]))
|
|
|
|
|
|
|
|
logger_context = logger.scoped_configure(
|
|
|
|
dir=logger_dir,
|
|
|
|
format_strs=['stdout', 'log', 'csv'] if MPI.COMM_WORLD.Get_rank() == 0 else ['log'])
|
|
|
|
tf_context = setup_tensorflow_session()
|
|
|
|
|
|
|
|
# saver
|
|
|
|
saver = tf.train.Saver()
|
|
|
|
return logger_context, tf_context, saver, logger_dir
|
|
|
|
|
|
|
|
|
|
|
|
def add_environments_params(parser):
|
|
|
|
parser.add_argument('--env', help='environment ID', default='BreakoutNoFrameskip-v4', type=str)
|
|
|
|
parser.add_argument('--max-episode-steps', help='maximum number of timesteps for episode', default=4500, type=int)
|
|
|
|
parser.add_argument('--env_kind', type=str, default="atari")
|
|
|
|
parser.add_argument('--noop_max', type=int, default=30)
|
|
|
|
parser.add_argument('--stickyAtari', action='store_true', default=False)
|
|
|
|
parser.add_argument('--pixelNoise', action='store_true', default=False)
|
|
|
|
parser.add_argument('--randomBoxNoise', action='store_true', default=False)
|
2023-05-29 15:11:26 +00:00
|
|
|
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
|
|
|
|
parser.add_argument('--resource_files', type=str)
|
|
|
|
parser.add_argument('--total_frames', default=100, type=int)
|
2021-10-09 00:33:47 +00:00
|
|
|
|
|
|
|
|
|
|
|
def add_optimization_params(parser):
|
|
|
|
parser.add_argument('--lambda', type=float, default=0.95)
|
|
|
|
parser.add_argument('--gamma', type=float, default=0.99) # lambda, gamma 用于计算 GAE advantage
|
|
|
|
parser.add_argument('--nminibatches', type=int, default=8)
|
|
|
|
parser.add_argument('--norm_adv', type=int, default=1) #
|
|
|
|
parser.add_argument('--norm_rew', type=int, default=1) #
|
|
|
|
parser.add_argument('--lr', type=float, default=1e-4) #
|
|
|
|
parser.add_argument('--ent_coeff', type=float, default=0.001) #
|
|
|
|
parser.add_argument('--nepochs', type=int, default=3) #
|
|
|
|
parser.add_argument('--num_timesteps', type=int, default=int(1e8))
|
|
|
|
parser.add_argument('--save_period', action='store_true', default=False) # 1e7
|
|
|
|
parser.add_argument('--save_freq', type=int, default=int(1e7)) # 1e7
|
|
|
|
# Parameters of Dynamic-Bottleneck
|
|
|
|
parser.add_argument('--loss_kl_weight', type=float, default=0.1) # KL loss weight
|
|
|
|
parser.add_argument('--loss_l2_weight', type=float, default=0.1) # l2 loss weight
|
|
|
|
parser.add_argument('--loss_nce_weight', type=float, default=0.01) # nce loss weight
|
|
|
|
parser.add_argument('--momentum_tau', type=float, default=0.001) # momentum tau
|
|
|
|
parser.add_argument('--aug', action='store_true', default=False) # data augmentation (bottleneck)
|
|
|
|
parser.add_argument('--comments', type=str, default="")
|
|
|
|
|
|
|
|
|
|
|
|
def add_rollout_params(parser):
|
|
|
|
parser.add_argument('--nsteps_per_seg', type=int, default=128)
|
|
|
|
parser.add_argument('--nsegs_per_env', type=int, default=1)
|
|
|
|
parser.add_argument('--envs_per_process', type=int, default=128)
|
|
|
|
parser.add_argument('--nlumps', type=int, default=1)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
|
|
add_environments_params(parser)
|
|
|
|
add_optimization_params(parser)
|
|
|
|
add_rollout_params(parser)
|
|
|
|
|
|
|
|
parser.add_argument('--exp_name', type=str, default='')
|
|
|
|
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
|
|
|
|
parser.add_argument('--dyn_from_pixels', type=int, default=0)
|
|
|
|
parser.add_argument('--use_news', type=int, default=0)
|
|
|
|
parser.add_argument('--ext_coeff', type=float, default=0.)
|
|
|
|
parser.add_argument('--int_coeff', type=float, default=1.)
|
|
|
|
parser.add_argument('--layernorm', type=int, default=0)
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
# load paramets
|
|
|
|
with open("para.json") as f:
|
|
|
|
d = json.load(f)
|
|
|
|
env_name_para = args.env.replace("NoFrameskip-v4", "")
|
|
|
|
if env_name_para not in list(d["standard"].keys()):
|
|
|
|
env_name_para = "other"
|
|
|
|
|
|
|
|
if args.pixelNoise is True:
|
|
|
|
print("pixel noise")
|
|
|
|
args.loss_kl_weight = d["pixelNoise"][env_name_para]["kl"]
|
|
|
|
args.loss_nce_weight = d["pixelNoise"][env_name_para]["nce"]
|
|
|
|
elif args.randomBoxNoise is True:
|
|
|
|
print("random box noise")
|
|
|
|
args.loss_kl_weight = d["randomBox"][env_name_para]["kl"]
|
|
|
|
args.loss_nce_weight = d["randomBox"][env_name_para]["nce"]
|
|
|
|
elif args.stickyAtari is True:
|
|
|
|
print("sticky noise")
|
|
|
|
args.loss_kl_weight = d["stickyAtari"][env_name_para]["kl"]
|
|
|
|
args.loss_nce_weight = d["stickyAtari"][env_name_para]["nce"]
|
|
|
|
else:
|
|
|
|
print("standard atari")
|
|
|
|
args.loss_kl_weight = d["standard"][env_name_para]["kl"]
|
|
|
|
args.loss_nce_weight = d["standard"][env_name_para]["nce"]
|
|
|
|
|
|
|
|
print("env_name:", env_name_para, "kl:", args.loss_kl_weight, ", nce:", args.loss_nce_weight)
|
|
|
|
start_experiment(**args.__dict__)
|
|
|
|
|