775 lines
37 KiB
Python
775 lines
37 KiB
Python
import os
|
|
import gc
|
|
import copy
|
|
import tqdm
|
|
import wandb
|
|
import random
|
|
import argparse
|
|
import numpy as np
|
|
from collections import OrderedDict
|
|
|
|
import utils
|
|
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image, shuffle_along_axis, Logger
|
|
from replay_buffer import ReplayBuffer
|
|
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
|
|
from video import VideoRecorder
|
|
from dmc2gym.wrappers import set_global_var
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torchvision.transforms as T
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
#from agent.baseline_agent import BaselineAgent
|
|
#from agent.bisim_agent import BisimAgent
|
|
#from agent.deepmdp_agent import DeepMDPAgent
|
|
#from agents.navigation.carla_env import CarlaEnv
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser()
|
|
# environment
|
|
parser.add_argument('--domain_name', default='cheetah')
|
|
parser.add_argument('--version', default=1, type=int)
|
|
parser.add_argument('--task_name', default='run')
|
|
parser.add_argument('--image_size', default=84, type=int)
|
|
parser.add_argument('--channels', default=3, type=int)
|
|
parser.add_argument('--action_repeat', default=2, type=int)
|
|
parser.add_argument('--frame_stack', default=3, type=int)
|
|
parser.add_argument('--collection_interval', default=100, type=int)
|
|
parser.add_argument('--resource_files', type=str)
|
|
parser.add_argument('--eval_resource_files', type=str)
|
|
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
|
|
parser.add_argument('--total_frames', default=5000, type=int) # 10000
|
|
parser.add_argument('--high_noise', action='store_true')
|
|
# replay buffer
|
|
parser.add_argument('--replay_buffer_capacity', default=50000, type=int) #50000
|
|
parser.add_argument('--episode_length', default=51, type=int)
|
|
# train
|
|
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
|
|
parser.add_argument('--init_steps', default=5000, type=int)
|
|
parser.add_argument('--num_train_steps', default=100000, type=int)
|
|
parser.add_argument('--update_steps', default=10, type=int)
|
|
parser.add_argument('--batch_size', default=64, type=int)
|
|
parser.add_argument('--state_size', default=100, type=int)
|
|
parser.add_argument('--hidden_size', default=512, type=int)
|
|
parser.add_argument('--history_size', default=256, type=int)
|
|
parser.add_argument('--episode_collection', default=5, type=int)
|
|
parser.add_argument('--episodes_buffer', default=5, type=int, help='Initial number of episodes to store in the buffer')
|
|
parser.add_argument('--num-units', type=int, default=50, help='num hidden units for reward/value/discount models')
|
|
parser.add_argument('--load_encoder', default=None, type=str)
|
|
parser.add_argument('--imagine_horizon', default=15, type=str)
|
|
parser.add_argument('--grad_clip_norm', type=float, default=100.0, help='Gradient clipping norm')
|
|
# eval
|
|
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
|
|
parser.add_argument('--num_eval_episodes', default=20, type=int)
|
|
parser.add_argument('--evaluation_interval', default=10000, type=int) # TODO: master had 10000
|
|
# value
|
|
parser.add_argument('--value_lr', default=8e-6, type=float)
|
|
parser.add_argument('--value_target_update_freq', default=100, type=int)
|
|
parser.add_argument('--td_lambda', default=0.95, type=int)
|
|
# actor
|
|
parser.add_argument('--actor_lr', default=8e-6, type=float)
|
|
parser.add_argument('--actor_beta', default=0.9, type=float)
|
|
parser.add_argument('--actor_log_std_min', default=-10, type=float)
|
|
parser.add_argument('--actor_log_std_max', default=2, type=float)
|
|
parser.add_argument('--actor_update_freq', default=2, type=int)
|
|
# world/encoder/decoder
|
|
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
|
|
parser.add_argument('--world_model_lr', default=1e-6, type=float)
|
|
parser.add_argument('--decoder_lr', default=6e-6, type=float)
|
|
parser.add_argument('--reward_lr', default=8e-6, type=float)
|
|
parser.add_argument('--encoder_tau', default=0.005, type=float)
|
|
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
|
|
parser.add_argument('--num_layers', default=4, type=int)
|
|
parser.add_argument('--num_filters', default=32, type=int)
|
|
parser.add_argument('--aug', action='store_true')
|
|
# sac
|
|
parser.add_argument('--discount', default=0.99, type=float)
|
|
# misc
|
|
parser.add_argument('--seed', default=1, type=int)
|
|
parser.add_argument('--logging_freq', default=100, type=int)
|
|
parser.add_argument('--saving_interval', default=2500, type=int)
|
|
parser.add_argument('--work_dir', default='.', type=str)
|
|
parser.add_argument('--save_tb', default=False, action='store_true')
|
|
parser.add_argument('--save_model', default=False, action='store_true')
|
|
parser.add_argument('--save_buffer', default=False, action='store_true')
|
|
parser.add_argument('--save_video', default=False, action='store_true')
|
|
parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble'])
|
|
parser.add_argument('--render', default=False, action='store_true')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DPI:
|
|
def __init__(self, args):
|
|
# wandb config
|
|
#run = wandb.init(project="dpi")
|
|
|
|
self.args = args
|
|
|
|
# set environment noise
|
|
set_global_var(self.args.high_noise)
|
|
|
|
# environment setup
|
|
self.env = make_env(self.args)
|
|
#self.args.seed = np.random.randint(0, 1000)
|
|
self.env.seed(self.args.seed)
|
|
self.global_episodes = 0
|
|
|
|
# noiseless environment setup
|
|
self.args.version = 2 # env_id changes to v2
|
|
self.args.img_source = None # no image noise
|
|
self.args.resource_files = None
|
|
|
|
# stack several consecutive frames together
|
|
if self.args.encoder_type.startswith('pixel'):
|
|
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
|
|
self.env = utils.ActionRepeat(self.env, self.args.action_repeat)
|
|
self.env = utils.NormalizeActions(self.env)
|
|
self.env = utils.TimeLimit(self.env, 1000 // args.action_repeat)
|
|
|
|
# create replay buffer
|
|
self.data_buffer = ReplayBuffer(self.args.replay_buffer_capacity,
|
|
self.env.observation_space.shape,
|
|
self.env.action_space.shape[0],
|
|
self.args.episode_length,
|
|
self.args.batch_size)
|
|
|
|
# create work directory
|
|
utils.make_dir(self.args.work_dir)
|
|
self.video_dir = utils.make_dir(os.path.join(self.args.work_dir, 'video'))
|
|
self.model_dir = utils.make_dir(os.path.join(self.args.work_dir, 'model'))
|
|
self.buffer_dir = utils.make_dir(os.path.join(self.args.work_dir, 'buffer'))
|
|
|
|
# create models
|
|
self.build_models(use_saved=False, saved_model_dir=self.model_dir)
|
|
|
|
def build_models(self, use_saved, saved_model_dir=None):
|
|
# World Models
|
|
self.obs_encoder = ObservationEncoder(
|
|
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
|
|
state_size=self.args.state_size # 128
|
|
).to(device)
|
|
self.obs_encoder.apply(self.init_weights)
|
|
|
|
self.obs_encoder_momentum = ObservationEncoder(
|
|
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
|
|
state_size=self.args.state_size # 128
|
|
).to(device)
|
|
self.obs_encoder_momentum.apply(self.init_weights)
|
|
|
|
self.obs_decoder = ObservationDecoder(
|
|
state_size=self.args.state_size, # 128
|
|
output_shape=(self.args.channels*self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84)
|
|
).to(device)
|
|
self.obs_decoder.apply(self.init_weights)
|
|
|
|
self.transition_model = TransitionModel(
|
|
state_size=self.args.state_size, # 128
|
|
hidden_size=self.args.hidden_size, # 256
|
|
action_size=self.env.action_space.shape[0], # 6
|
|
history_size=self.args.history_size, # 128
|
|
).to(device)
|
|
self.transition_model.apply(self.init_weights)
|
|
|
|
# Actor Model
|
|
self.actor_model = Actor(
|
|
state_size=self.args.state_size, # 128
|
|
hidden_size=self.args.hidden_size, # 256,
|
|
action_size=self.env.action_space.shape[0], # 6
|
|
).to(device)
|
|
self.actor_model.apply(self.init_weights)
|
|
|
|
|
|
# Value Models
|
|
self.value_model = ValueModel(
|
|
state_size=self.args.state_size, # 128
|
|
hidden_size=self.args.hidden_size, # 256
|
|
).to(device)
|
|
self.value_model.apply(self.init_weights)
|
|
|
|
self.target_value_model = ValueModel(
|
|
state_size=self.args.state_size, # 128
|
|
hidden_size=self.args.hidden_size, # 256
|
|
).to(device)
|
|
self.target_value_model.apply(self.init_weights)
|
|
|
|
self.reward_model = RewardModel(
|
|
state_size=self.args.state_size, # 128
|
|
hidden_size=self.args.hidden_size, # 256
|
|
).to(device)
|
|
self.reward_model.apply(self.init_weights)
|
|
|
|
# Contrastive Models
|
|
self.prjoection_head = ProjectionHead(
|
|
state_size=self.args.state_size, # 128
|
|
action_size=self.env.action_space.shape[0], # 6
|
|
hidden_size=self.args.hidden_size, # 256
|
|
).to(device)
|
|
|
|
self.prjoection_head_momentum = ProjectionHead(
|
|
state_size=self.args.state_size, # 128
|
|
action_size=self.env.action_space.shape[0], # 6
|
|
hidden_size=self.args.hidden_size, # 256
|
|
).to(device)
|
|
|
|
self.contrastive_head = ContrastiveHead(
|
|
hidden_size=self.args.hidden_size, # 256
|
|
).to(device)
|
|
|
|
self.club_sample = CLUBSample(
|
|
x_dim=self.args.state_size, # 128
|
|
y_dim=self.args.state_size, # 128
|
|
hidden_size=self.args.hidden_size, # 256
|
|
).to(device)
|
|
|
|
|
|
# model parameters
|
|
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.prjoection_head.parameters()) + \
|
|
list(self.transition_model.parameters()) + list(self.club_sample.parameters()) + \
|
|
list(self.contrastive_head.parameters())
|
|
|
|
# optimizers
|
|
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr,eps=1e-6)
|
|
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr,eps=1e-6)
|
|
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr,eps=1e-6)
|
|
self.decoder_opt = torch.optim.Adam(self.obs_decoder.parameters(), self.args.decoder_lr,eps=1e-6)
|
|
self.reward_opt = torch.optim.Adam(self.reward_model.parameters(), self.args.reward_lr,eps=1e-6)
|
|
|
|
# Create Modules
|
|
self.world_model_modules = [self.obs_encoder, self.prjoection_head, self.transition_model, self.club_sample, self.contrastive_head,
|
|
self.obs_encoder_momentum, self.prjoection_head_momentum]
|
|
self.value_modules = [self.value_model]
|
|
self.actor_modules = [self.actor_model]
|
|
self.decoder_modules = [self.obs_decoder]
|
|
self.reward_modules = [self.reward_model]
|
|
|
|
if use_saved:
|
|
self._use_saved_models(saved_model_dir)
|
|
|
|
def _use_saved_models(self, saved_model_dir):
|
|
self.obs_encoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_encoder.pt')))
|
|
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
|
|
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
|
|
|
|
def collect_random_sequences(self, seed_steps):
|
|
obs = self.env.reset()
|
|
done = False
|
|
all_rews = []
|
|
self.global_episodes += 1
|
|
epi_reward = 0
|
|
for _ in tqdm.tqdm(range(seed_steps), desc='Collecting episodes'):
|
|
action = self.env.action_space.sample()
|
|
next_obs, rew, done, _ = self.env.step(action)
|
|
self.data_buffer.add(obs, action, next_obs, rew, done)
|
|
obs = next_obs
|
|
epi_reward += rew
|
|
if done:
|
|
obs = self.env.reset()
|
|
done=False
|
|
all_rews.append(epi_reward)
|
|
epi_reward = 0
|
|
return all_rews
|
|
|
|
def collect_sequences(self, collect_steps, actor_model):
|
|
obs = self.env.reset()
|
|
done = False
|
|
all_rews = []
|
|
self.global_episodes += 1
|
|
epi_reward = 0
|
|
for episode_count in tqdm.tqdm(range(collect_steps), desc='Collecting episodes'):
|
|
with torch.no_grad():
|
|
obs_ = torch.tensor(obs.copy(), dtype=torch.float32)
|
|
obs_ = preprocess_obs(obs_).to(device)
|
|
#state = self.get_features(obs_)["sample"].unsqueeze(0)
|
|
state = self.get_features(obs_)["distribution"].rsample()
|
|
action = actor_model(state)
|
|
action = actor_model.add_exploration(action)
|
|
action = action.cpu().numpy()[0]
|
|
next_obs, rew, done, _ = self.env.step(action)
|
|
self.data_buffer.add(obs, action, next_obs, rew, done)
|
|
|
|
if done:
|
|
obs = self.env.reset()
|
|
done = False
|
|
all_rews.append(epi_reward)
|
|
epi_reward = 0
|
|
else:
|
|
obs = next_obs
|
|
epi_reward += rew
|
|
return all_rews
|
|
|
|
def train(self, step, total_steps):
|
|
# logger
|
|
logdir = os.path.dirname(os.path.realpath(__file__)) + "/log/logs/"
|
|
if not(os.path.exists(logdir)):
|
|
os.makedirs(logdir)
|
|
initial_logs = OrderedDict()
|
|
logger = Logger(logdir)
|
|
|
|
episodic_rews = self.collect_random_sequences(self.args.init_steps//args.action_repeat)
|
|
self.global_step = self.data_buffer.steps
|
|
|
|
initial_logs.update({
|
|
'train_avg_reward':np.mean(episodic_rews),
|
|
'train_max_reward': np.max(episodic_rews),
|
|
'train_min_reward': np.min(episodic_rews),
|
|
'train_std_reward':np.std(episodic_rews),
|
|
})
|
|
logger.log_scalars(initial_logs, step=0)
|
|
logger.flush()
|
|
|
|
|
|
while self.global_step < total_steps:
|
|
logs = OrderedDict()
|
|
step += 1
|
|
for update_steps in range(self.args.update_steps):
|
|
model_loss, actor_loss, value_loss, actor_model = self.update((step-1)*args.update_steps + update_steps)
|
|
|
|
initial_logs.update({
|
|
'model_loss' : model_loss,
|
|
'actor_loss': actor_loss,
|
|
'value_loss': value_loss,
|
|
'train_avg_reward':np.mean(episodic_rews),
|
|
'train_max_reward': np.max(episodic_rews),
|
|
'train_min_reward': np.min(episodic_rews),
|
|
'train_std_reward':np.std(episodic_rews),
|
|
})
|
|
logger.log_scalars(logs, self.global_step)
|
|
|
|
|
|
print("########## Global Step:", self.global_step, " ##########")
|
|
for key, value in initial_logs.items():
|
|
print(key, " : ", value)
|
|
|
|
episodic_rews = self.collect_sequences(1000//self.args.action_repeat, actor_model)
|
|
|
|
if self.global_step % 3150 == 0 and self.data_buffer.steps!=0: #self.args.evaluation_interval == 0:
|
|
print("Saving model")
|
|
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
|
|
self.save_models(path)
|
|
self.evaluate()
|
|
|
|
self.global_step = self.data_buffer.steps * self.args.action_repeat
|
|
|
|
"""
|
|
# collect experience
|
|
if step !=0:
|
|
encoder = self.obs_encoder
|
|
actor = self.actor_model
|
|
all_rews = self.collect_sequences(self.args.episode_collection, actor_model=actor, encoder_model=encoder)
|
|
"""
|
|
|
|
def collect_batch(self):
|
|
obs_, acs_, nxt_obs_, rews_, terms_ = self.data_buffer.sample()
|
|
|
|
obs = torch.tensor(obs_, dtype=torch.float32)[1:]
|
|
last_obs = torch.tensor(obs_, dtype=torch.float32)[:-1]
|
|
nxt_obs = torch.tensor(nxt_obs_, dtype=torch.float32)[1:]
|
|
acs = torch.tensor(acs_, dtype=torch.float32)[:-1].to(device)
|
|
nxt_acs = torch.tensor(acs_, dtype=torch.float32)[1:].to(device)
|
|
rews = torch.tensor(rews_, dtype=torch.float32)[:-1].to(device).unsqueeze(-1)
|
|
nonterms = torch.tensor((1.0-terms_), dtype=torch.float32)[:-1].to(device).unsqueeze(-1)
|
|
|
|
last_obs = preprocess_obs(last_obs).to(device)
|
|
obs = preprocess_obs(obs).to(device)
|
|
nxt_obs = preprocess_obs(nxt_obs).to(device)
|
|
|
|
return last_obs, obs, nxt_obs, acs, rews, nxt_acs, nonterms
|
|
|
|
def update(self, step):
|
|
last_observations, current_observations, next_observations, actions, rewards, next_actions, nonterms = self.collect_batch()
|
|
|
|
#last_observations, current_observations, next_observations, actions, next_actions, rewards = self.select_one_batch()
|
|
|
|
|
|
world_loss, enc_loss, rew_loss, dec_loss, ub_loss, lb_loss = self.world_model_losses(last_observations,
|
|
current_observations,
|
|
next_observations,
|
|
actions,
|
|
next_actions,
|
|
rewards,
|
|
nonterms)
|
|
self.world_model_opt.zero_grad()
|
|
world_loss.backward()
|
|
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
|
|
self.world_model_opt.step()
|
|
|
|
self.decoder_opt.zero_grad()
|
|
dec_loss.backward()
|
|
nn.utils.clip_grad_norm_(self.obs_decoder.parameters(), self.args.grad_clip_norm)
|
|
self.decoder_opt.step()
|
|
|
|
self.reward_opt.zero_grad()
|
|
rew_loss.backward()
|
|
nn.utils.clip_grad_norm_(self.reward_model.parameters(), self.args.grad_clip_norm)
|
|
self.reward_opt.step()
|
|
|
|
actor_loss = self.actor_model_losses()
|
|
self.actor_opt.zero_grad()
|
|
actor_loss.backward()
|
|
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
|
|
self.actor_opt.step()
|
|
|
|
value_loss = self.value_model_losses()
|
|
self.value_opt.zero_grad()
|
|
value_loss.backward()
|
|
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm)
|
|
self.value_opt.step()
|
|
|
|
# update momentum encoder and projection head
|
|
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
|
|
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
|
|
|
|
# update target value networks
|
|
#if step % self.args.value_target_update_freq == 0:
|
|
# self.target_value_model = copy.deepcopy(self.value_model)
|
|
|
|
if step % self.args.logging_freq:
|
|
writer.add_scalar('World Loss/World Loss', world_loss.detach().item(), step)
|
|
writer.add_scalar('Main Models Loss/Encoder Loss', enc_loss.detach().item(), step)
|
|
writer.add_scalar('Main Models Loss/Decoder Loss', dec_loss.detach().item(), step)
|
|
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), step)
|
|
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step)
|
|
writer.add_scalar('Actor Critic Loss/Reward Loss', rew_loss.detach().item(), step)
|
|
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), step)
|
|
writer.add_scalar('Bound Loss/Lower Bound Loss', -lb_loss.detach().item(), step)
|
|
|
|
return world_loss.item(), actor_loss.item(), value_loss.item(), self.actor_model
|
|
|
|
def world_model_losses(self, last_obs, curr_obs, nxt_obs, actions, nxt_actions, rewards, nonterms):
|
|
# get features
|
|
self.last_state_feat = self.get_features(last_obs)
|
|
self.curr_state_feat = self.get_features(curr_obs)
|
|
self.nxt_state_feat = self.get_features(nxt_obs)
|
|
self.nxt_state_feat_lb = self.get_features(nxt_obs, momentum=True)
|
|
|
|
# states
|
|
self.last_state_enc = self.last_state_feat["distribution"].rsample() #self.last_state_feat["sample"]
|
|
self.curr_state_enc = self.curr_state_feat["distribution"].rsample() #self.curr_state_feat["sample"]
|
|
self.nxt_state_enc = self.nxt_state_feat["distribution"].rsample() #self.nxt_state_feat["sample"]
|
|
self.nxt_state_enc_lb = self.nxt_state_feat_lb["distribution"].rsample() #self.nxt_state_feat_lb["sample"]
|
|
|
|
# predict next states
|
|
self.transition_model.init_states(self.args.batch_size, device) # (N,128)
|
|
self.observed_rollout = self.transition_model.observe_rollout(self.last_state_enc, actions, self.transition_model.prev_history, nonterms)
|
|
self.pred_curr_state_dist = self.transition_model.get_dist(self.observed_rollout["mean"], self.observed_rollout["std"])
|
|
self.pred_curr_state_enc = self.pred_curr_state_dist.rsample() #self.observed_rollout["sample"]
|
|
|
|
# encoder loss
|
|
enc_loss = self._encoder_loss(self.curr_state_feat["distribution"], self.pred_curr_state_dist)
|
|
|
|
# reward loss
|
|
rew_dist = self.reward_model(self.curr_state_enc.detach())
|
|
#print(torch.cat([rew_dist.mean[0], rewards[0]],dim=-1))
|
|
rew_loss = -torch.mean(rew_dist.log_prob(rewards))
|
|
|
|
# decoder loss
|
|
dec_dist = self.obs_decoder(self.nxt_state_enc.detach())
|
|
dec_loss = -torch.mean(dec_dist.log_prob(nxt_obs))
|
|
|
|
# upper bound loss
|
|
past_ub_loss = 0
|
|
for i in range(self.curr_state_enc.shape[0]):
|
|
_, ub_loss = self._upper_bound_minimization(self.curr_state_enc[i],
|
|
self.pred_curr_state_enc[i])
|
|
ub_loss = ub_loss + past_ub_loss
|
|
past_ub_loss = ub_loss
|
|
ub_loss = ub_loss / self.curr_state_enc.shape[0]
|
|
ub_loss = 1 * ub_loss
|
|
|
|
# lower bound loss
|
|
# contrastive projection
|
|
vec_anchor = self.pred_curr_state_enc.detach()
|
|
vec_positive = self.nxt_state_enc_lb.detach()
|
|
z_anchor = self.prjoection_head(vec_anchor, nxt_actions)
|
|
z_positive = self.prjoection_head_momentum(vec_positive, nxt_actions)
|
|
|
|
# contrastive loss
|
|
past_lb_loss = 0
|
|
for i in range(z_anchor.shape[0]):
|
|
logits = self.contrastive_head(z_anchor[i], z_positive[i])
|
|
labels = torch.arange(logits.shape[0]).long().to(device)
|
|
lb_loss = F.cross_entropy(logits, labels) + past_lb_loss
|
|
past_lb_loss = lb_loss.detach().item()
|
|
lb_loss = -0.01 * lb_loss/(z_anchor.shape[0])
|
|
|
|
world_loss = enc_loss + ub_loss + lb_loss
|
|
|
|
return world_loss, enc_loss , rew_loss, dec_loss, ub_loss, lb_loss
|
|
|
|
def actor_model_losses(self):
|
|
with torch.no_grad():
|
|
#curr_state_enc = self.curr_state_enc.reshape(self.args.episode_length-1,-1) #self.transition_model.seq_to_batch(self.curr_state_feat, "sample")["sample"]
|
|
#curr_state_hist = self.observed_rollout["history"].reshape(self.args.episode_length-1,-1) #self.transition_model.seq_to_batch(self.observed_rollout, "history")["sample"]
|
|
curr_state_enc = self.curr_state_enc.reshape(-1, self.args.state_size)
|
|
curr_state_hist = self.observed_rollout["history"].reshape(-1, self.args.history_size)
|
|
|
|
with FreezeParameters(self.world_model_modules + self.decoder_modules + self.reward_modules + self.value_modules):
|
|
imagine_horizon = self.args.imagine_horizon
|
|
action = self.actor_model(curr_state_enc.detach())
|
|
self.imagined_rollout = self.transition_model.imagine_rollout(curr_state_enc,
|
|
action, curr_state_hist.detach(),
|
|
imagine_horizon)
|
|
self.pred_nxt_state_dist = self.transition_model.get_dist(self.imagined_rollout["mean"], self.imagined_rollout["std"])
|
|
self.pred_nxt_state_enc = self.pred_nxt_state_dist.rsample() #self.transition_model.reparemeterize(self.imagined_rollout["mean"], self.imagined_rollout["std"])
|
|
|
|
with FreezeParameters(self.world_model_modules + self.value_modules + self.decoder_modules + self.reward_modules):
|
|
imag_rewards_dist = self.reward_model(self.pred_nxt_state_enc)
|
|
imag_values_dist = self.value_model(self.pred_nxt_state_enc)
|
|
imag_rewards = imag_rewards_dist.mean
|
|
imag_values = imag_values_dist.mean
|
|
#print(torch.cat([imag_rewards[0], imag_values[0]],dim=-1))
|
|
discounts = self.args.discount * torch.ones_like(imag_rewards).detach()
|
|
|
|
self.returns = self._compute_lambda_return(imag_rewards[:-1],
|
|
imag_values[:-1],
|
|
discounts[:-1] ,
|
|
self.args.td_lambda,
|
|
imag_values[-1])
|
|
discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0)
|
|
self.discounts = torch.cumprod(discounts, 0).detach()
|
|
actor_loss = -torch.mean(self.discounts * self.returns)
|
|
return actor_loss
|
|
|
|
def value_model_losses(self):
|
|
with torch.no_grad():
|
|
value_feat = self.pred_nxt_state_enc[:-1].detach()
|
|
value_targ = self.returns.detach()
|
|
value_dist = self.value_model(value_feat)
|
|
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
|
|
return value_loss
|
|
|
|
def select_one_batch(self):
|
|
# collect sequences
|
|
non_zero_indices = np.nonzero(self.data_buffer.episode_count)[0]
|
|
current_obs = self.data_buffer.observations[non_zero_indices]
|
|
next_obs = self.data_buffer.next_observations[non_zero_indices]
|
|
actions_raw = self.data_buffer.actions[non_zero_indices]
|
|
rewards = self.data_buffer.rewards[non_zero_indices]
|
|
self.terms = np.where(self.data_buffer.terminals[non_zero_indices]!=False)[0]
|
|
|
|
# group by episodes
|
|
current_obs = self.grouped_arrays(current_obs)
|
|
next_obs = self.grouped_arrays(next_obs)
|
|
actions_raw = self.grouped_arrays(actions_raw)
|
|
rewards_ = self.grouped_arrays(rewards)
|
|
|
|
# select random chunks of episodes
|
|
if current_obs.shape[0] < self.args.batch_size:
|
|
random_episode_number = np.random.randint(0, current_obs.shape[0], self.args.batch_size)
|
|
else:
|
|
random_episode_number = random.sample(range(current_obs.shape[0]), self.args.batch_size)
|
|
|
|
# select random starting points
|
|
if current_obs[0].shape[0]-self.args.episode_length < self.args.batch_size:
|
|
init_index = np.random.randint(0, current_obs[0].shape[0]-self.args.episode_length-2, self.args.batch_size)
|
|
else:
|
|
init_index = np.asarray(random.sample(range(current_obs[0].shape[0]-self.args.episode_length), self.args.batch_size))
|
|
|
|
# shuffle
|
|
random.shuffle(random_episode_number)
|
|
random.shuffle(init_index)
|
|
|
|
# select first k elements
|
|
last_observations = self.select_first_k(current_obs, init_index, random_episode_number)[:-1]
|
|
current_observations = self.select_first_k(current_obs, init_index, random_episode_number)[1:]
|
|
next_observations = self.select_first_k(next_obs, init_index, random_episode_number)[:-1]
|
|
actions = self.select_first_k(actions_raw, init_index, random_episode_number)[:-1].to(device)
|
|
next_actions = self.select_first_k(actions_raw, init_index, random_episode_number)[1:].to(device)
|
|
rewards = self.select_first_k(rewards_, init_index, random_episode_number)[:-1].to(device)
|
|
|
|
# preprocessing
|
|
last_observations = preprocess_obs(last_observations).to(device)
|
|
current_observations = preprocess_obs(current_observations).to(device)
|
|
next_observations = preprocess_obs(next_observations).to(device)
|
|
|
|
return last_observations, current_observations, next_observations, actions, next_actions, rewards
|
|
|
|
def evaluate(self, eval_episodes=10):
|
|
path = path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
|
|
self.restore_checkpoint(path)
|
|
|
|
obs = self.env.reset()
|
|
done = False
|
|
|
|
#video = VideoRecorder(self.video_dir, resource_files=self.args.resource_files)
|
|
if self.args.save_video:
|
|
self.env.video.init(enabled=True)
|
|
episodic_rewards = []
|
|
for episode in range(eval_episodes):
|
|
rewards = 0
|
|
done = False
|
|
while not done:
|
|
with torch.no_grad():
|
|
obs = torch.tensor(obs.copy(), dtype=torch.float32).unsqueeze(0)
|
|
obs_processed = preprocess_obs(obs).to(device)
|
|
state = self.get_features(obs_processed)["distribution"].rsample()
|
|
action = self.actor_model(state).cpu().detach().numpy().squeeze()
|
|
next_obs, rew, done, _ = self.env.step(action)
|
|
rewards += rew
|
|
obs = next_obs
|
|
|
|
if self.args.save_video:
|
|
self.env.video.record(self.env)
|
|
self.env.video.save('/home/vedant/Curiosity/Curiosity/DPI/log/video/learned_model.mp4')
|
|
obs = self.env.reset()
|
|
episodic_rewards.append(rewards)
|
|
print("Episodic rewards: ", episodic_rewards)
|
|
print("Average episodic reward: ", np.mean(episodic_rewards))
|
|
|
|
def init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
torch.nn.init.xavier_uniform_(m.weight)
|
|
m.bias.data.fill_(0.01)
|
|
|
|
|
|
def grouped_arrays(self,array):
|
|
indices = [0] + self.terms.tolist()
|
|
def subarrays():
|
|
for start, end in zip(indices[:-1], indices[1:]):
|
|
yield array[start:end]
|
|
try:
|
|
subarrays = np.stack(list(subarrays()), axis=0)
|
|
except ValueError:
|
|
subarrays = np.asarray(list(subarrays()))
|
|
|
|
return subarrays
|
|
|
|
def select_first_k(self, array, init_index, episode_number):
|
|
term_index = init_index + self.args.episode_length
|
|
|
|
array = array[episode_number]
|
|
|
|
array_list = []
|
|
for i in range(array.shape[0]):
|
|
array_list.append(array[i][init_index[i]:term_index[i]])
|
|
array = np.asarray(array_list)
|
|
if array.ndim == 5:
|
|
transposed_array = np.transpose(array, (1, 0, 2, 3, 4))
|
|
elif array.ndim == 4:
|
|
transposed_array = np.transpose(array, (1, 0, 2, 3))
|
|
elif array.ndim == 3:
|
|
transposed_array = np.transpose(array, (1, 0, 2))
|
|
elif array.ndim == 2:
|
|
transposed_array = np.transpose(array, (1, 0))
|
|
else:
|
|
transposed_array = np.expand_dims(array, axis=0)
|
|
|
|
#return torch.tensor(array).float()
|
|
return torch.tensor(transposed_array).float()
|
|
|
|
def _upper_bound_minimization(self, current_states, predicted_current_states):
|
|
current_negative_states = shuffle_along_axis(current_states.clone(), axis=0)
|
|
current_negative_states = shuffle_along_axis(current_negative_states, axis=1)
|
|
club_loss = self.club_sample(current_states, predicted_current_states, current_negative_states)
|
|
likelihood_loss = 0
|
|
return likelihood_loss, club_loss
|
|
|
|
def _encoder_loss(self, curr_states_dist, predicted_curr_states_dist):
|
|
# KL divergence loss
|
|
loss = torch.mean(torch.distributions.kl.kl_divergence(curr_states_dist,predicted_curr_states_dist))
|
|
|
|
return loss
|
|
|
|
def get_features(self, x, momentum=False):
|
|
if self.args.aug:
|
|
crop_transform = T.RandomCrop(size=80)
|
|
cropped_x = torch.stack([crop_transform(x[i]) for i in range(x.size(0))])
|
|
padding = (2, 2, 2, 2)
|
|
x = F.pad(cropped_x, padding)
|
|
|
|
with torch.no_grad():
|
|
if momentum:
|
|
x = self.obs_encoder_momentum(x)
|
|
else:
|
|
x = self.obs_encoder(x)
|
|
return x
|
|
|
|
def _compute_lambda_return(self, rewards, values, discounts, td_lam, last_value):
|
|
next_values = torch.cat([values[1:], last_value[None]], 0)
|
|
target = rewards + discounts * next_values * (1 - td_lam)
|
|
timesteps = list(range(rewards.shape[0] - 1, -1, -1))
|
|
outputs = []
|
|
accumulated_reward = last_value
|
|
for t in timesteps:
|
|
inp = target[t]
|
|
discount_factor = discounts[t]
|
|
accumulated_reward = inp + discount_factor * td_lam * accumulated_reward
|
|
outputs.append(accumulated_reward)
|
|
returns = torch.flip(torch.stack(outputs), [0])
|
|
return returns
|
|
"""
|
|
next_values = torch.cat([values[1:], last_value.unsqueeze(0)],0)
|
|
targets = rewards + discounts * next_values * (1-td_lam)
|
|
rets =[]
|
|
last_rew = last_value
|
|
|
|
for t in range(rewards.shape[0]-1, -1, -1):
|
|
last_rew = targets[t] + discounts[t] * td_lam *(last_rew)
|
|
rets.append(last_rew)
|
|
|
|
returns = torch.flip(torch.stack(rets), [0])
|
|
return returns
|
|
"""
|
|
|
|
def lambda_return(self,imged_reward, value_pred, bootstrap, discount=0.99, lambda_=0.95):
|
|
# Setting lambda=1 gives a discounted Monte Carlo return.
|
|
# Setting lambda=0 gives a fixed 1-step return.
|
|
next_values = torch.cat([value_pred[1:], bootstrap[None]], 0)
|
|
discount_tensor = discount * torch.ones_like(imged_reward) # pcont
|
|
inputs = imged_reward + discount_tensor * next_values * (1 - lambda_)
|
|
last = bootstrap
|
|
indices = reversed(range(len(inputs)))
|
|
outputs = []
|
|
for index in indices:
|
|
inp, disc = inputs[index], discount_tensor[index]
|
|
last = inp + disc * lambda_ * last
|
|
outputs.append(last)
|
|
outputs = list(reversed(outputs))
|
|
outputs = torch.stack(outputs, 0)
|
|
returns = outputs
|
|
return returns
|
|
|
|
def save_models(self, save_path):
|
|
torch.save(
|
|
{'rssm' : self.transition_model.state_dict(),
|
|
'actor': self.actor_model.state_dict(),
|
|
'reward_model': self.reward_model.state_dict(),
|
|
'obs_encoder': self.obs_encoder.state_dict(),
|
|
'obs_decoder': self.obs_decoder.state_dict(),
|
|
'actor_optimizer': self.actor_opt.state_dict(),
|
|
'value_optimizer': self.value_opt.state_dict(),
|
|
'world_model_optimizer': self.world_model_opt.state_dict(),}, save_path)
|
|
|
|
def restore_checkpoint(self, ckpt_path):
|
|
checkpoint = torch.load(ckpt_path)
|
|
self.transition_model.load_state_dict(checkpoint['rssm'])
|
|
self.actor_model.load_state_dict(checkpoint['actor'])
|
|
self.reward_model.load_state_dict(checkpoint['reward_model'])
|
|
self.obs_encoder.load_state_dict(checkpoint['obs_encoder'])
|
|
self.obs_decoder.load_state_dict(checkpoint['obs_decoder'])
|
|
self.world_model_opt.load_state_dict(checkpoint['world_model_optimizer'])
|
|
self.actor_opt.load_state_dict(checkpoint['actor_optimizer'])
|
|
self.value_opt.load_state_dict(checkpoint['value_optimizer'])
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_args()
|
|
|
|
writer = SummaryWriter()
|
|
|
|
|
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
|
|
|
step = 0
|
|
total_steps = 2000000
|
|
dpi = DPI(args)
|
|
dpi.train(step,total_steps)
|
|
dpi.evaluate() |