Curiosity/models.py
2023-01-30 17:59:11 +01:00

159 lines
5.8 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as f
from torch.distributions import Categorical
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Encoder(nn.Module):
def __init__(self, channels, encoded_state_size):
super(Encoder, self).__init__()
self.channels = channels
self.encoded_state_size = encoded_state_size
self.feature_encoder = nn.Sequential(
nn.Conv2d(in_channels=self.channels, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Flatten(),
nn.Linear(in_features=32*4*4, out_features=self.encoded_state_size),
).to(device)
def forward(self, state):
if state.dim() == 3:
state = state.unsqueeze(0)
state = self.feature_encoder(state)
return state
class InverseModel(nn.Module):
def __init__(self, encoded_state_size, action_size=2):
super(InverseModel, self).__init__()
self.encoded_state_size = encoded_state_size
self.action_size = action_size
self.model = nn.Sequential(
nn.Linear(in_features=self.encoded_state_size*2, out_features=256),
nn.LeakyReLU(),
nn.Linear(in_features=256, out_features=self.action_size),
nn.Softmax(dim=-1)
).to(device)
def forward(self, encoded_state, next_encoded_state):
encoded_states = torch.cat((encoded_state, next_encoded_state), dim=-1)
actions = Categorical(self.model(encoded_states))
return actions
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
class ForwardModel(nn.Module):
def __init__(self, encoded_state_size, action_size):
super(ForwardModel, self).__init__()
self.encoded_state_size = encoded_state_size
self.action_size = action_size
self.model = nn.Sequential(
nn.Linear(in_features=self.encoded_state_size+self.action_size, out_features=256),
nn.LeakyReLU(),
nn.Linear(in_features=256, out_features=self.encoded_state_size),
).to(device)
def forward(self, state, action):
state = torch.cat((state, action), dim=-1)
return self.model(state)
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
class Actor(nn.Module):
def __init__(self,encoded_state_size, action_size, state_size=4):
super(Actor, self).__init__()
self.channels = state_size
self.encoded_state_size = encoded_state_size
self.action_size = action_size
self.feature_encoder = nn.Sequential(
nn.Conv2d(in_channels=self.channels, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Flatten(),
nn.Linear(in_features=32*4*4, out_features=self.encoded_state_size),
).to(device)
def actor(self,state):
policy = nn.Sequential(
nn.Linear(in_features=self.encoded_state_size , out_features=256),
nn.LeakyReLU(),
nn.Linear(in_features=256, out_features=self.action_size),
nn.Softmax(dim=-1)
).to(device)
return policy(state)
def forward(self, state):
state = self.feature_encoder(state)
policy = self.actor(state)
actions = Categorical(policy)
return actions
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
class Critic(nn.Module):
def __init__(self, encoded_state_size, state_size=4):
super(Critic, self).__init__()
self.channels = state_size
self.encoded_state_size = encoded_state_size
self.feature_encoder = nn.Sequential(
nn.Conv2d(in_channels=self.channels, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Flatten(),
nn.Linear(in_features=32*4*4, out_features=self.encoded_state_size),
).to(device)
def critic(self,state):
value = nn.Sequential(
nn.Linear(in_features=self.encoded_state_size , out_features=256),
nn.LeakyReLU(),
nn.Linear(in_features=256, out_features=1),
).to(device)
return value(state)
def forward(self, state):
state = self.feature_encoder(state)
value = self.critic(state)
return value
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)