Compare commits
No commits in common. "idea_1" and "main" have entirely different histories.
322
DPI/models.py
322
DPI/models.py
@ -13,7 +13,7 @@ class ObservationEncoder(nn.Module):
|
||||
assert len(obs_shape) == 3
|
||||
|
||||
self.state_size = state_size
|
||||
|
||||
|
||||
layers = []
|
||||
for i in range(num_layers):
|
||||
input_channels = obs_shape[0] if i == 0 else output_channels
|
||||
@ -23,24 +23,23 @@ class ObservationEncoder(nn.Module):
|
||||
|
||||
self.convs = nn.Sequential(*layers)
|
||||
|
||||
self.fc = nn.Linear(256 * obs_shape[0], 2 * state_size) # 9 if 3 frames stacked
|
||||
self.fc = nn.Linear(256 * 3 * 3, 2 * state_size)
|
||||
|
||||
def forward(self, x):
|
||||
x_reshaped = x.reshape(-1, *x.shape[-3:])
|
||||
x_embed = self.convs(x_reshaped)
|
||||
x_embed = torch.reshape(x_embed, (*x.shape[:-3], -1))
|
||||
x = self.fc(x_embed)
|
||||
x = self.convs(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.fc(x)
|
||||
|
||||
# Mean and standard deviation
|
||||
mean, std = torch.chunk(x, 2, dim=-1)
|
||||
mean = nn.ELU()(mean)
|
||||
std = F.softplus(std)
|
||||
std = torch.clamp(std, min=0.0, max=1e1)
|
||||
std = torch.clamp(std, min=0.0, max=1e5)
|
||||
|
||||
# Normal Distribution
|
||||
dist = self.get_dist(mean, std)
|
||||
|
||||
# Sampling via reparameterization Trick
|
||||
#x = dist.rsample()
|
||||
x = self.reparameterize(mean, std)
|
||||
|
||||
encoded_output = {"sample": x, "distribution": dist}
|
||||
@ -64,7 +63,7 @@ class ObservationDecoder(nn.Module):
|
||||
self.output_shape = output_shape
|
||||
self.input_size = 256 * 3 * 3
|
||||
self.in_channels = [self.input_size, 256, 128, 64]
|
||||
self.out_channels = [256, 128, 64, 9]
|
||||
self.out_channels = [256, 128, 64, 3]
|
||||
|
||||
if output_shape[1] == 84:
|
||||
self.kernels = [5, 7, 5, 6]
|
||||
@ -95,50 +94,43 @@ class ObservationDecoder(nn.Module):
|
||||
|
||||
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, state_size, hidden_size, action_size, num_layers=4, min_std=1e-4, init_std=5, mean_scale=5):
|
||||
def __init__(self, state_size, hidden_size, action_size, num_layers=5):
|
||||
super().__init__()
|
||||
self.state_size = state_size
|
||||
self.hidden_size = hidden_size
|
||||
self.action_size = action_size
|
||||
self.num_layers = num_layers
|
||||
|
||||
self._min_std = min_std
|
||||
self._init_std = init_std
|
||||
self._mean_scale = mean_scale
|
||||
self._min_std=torch.Tensor([1e-4])[0]
|
||||
self._init_std=torch.Tensor([5])[0]
|
||||
self._mean_scale=torch.Tensor([5])[0]
|
||||
|
||||
layers = []
|
||||
for i in range(self.num_layers):
|
||||
input_channels = state_size if i == 0 else self.hidden_size
|
||||
layers.append(nn.Linear(input_channels, self.hidden_size))
|
||||
layers.append(nn.ReLU())
|
||||
layers.append(nn.Linear(self.hidden_size, 2*self.action_size))
|
||||
output_channels = self.hidden_size if i!= self.num_layers-1 else 2*action_size
|
||||
layers.append(nn.Linear(input_channels, output_channels))
|
||||
layers.append(nn.LeakyReLU())
|
||||
self.action_model = nn.Sequential(*layers)
|
||||
|
||||
def get_dist(self, mean, std):
|
||||
distribution = torch.distributions.Normal(mean, std)
|
||||
distribution = torch.distributions.transformed_distribution.TransformedDistribution(distribution, TanhBijector())
|
||||
distribution = torch.distributions.independent.Independent(distribution, 1)
|
||||
distribution = SampleDist(distribution)
|
||||
return distribution
|
||||
|
||||
def add_exploration(self, action, action_noise=0.3):
|
||||
return torch.clamp(torch.distributions.Normal(action, action_noise).rsample(), -1, 1)
|
||||
|
||||
def forward(self, features):
|
||||
out = self.action_model(features)
|
||||
mean, std = torch.chunk(out, 2, dim=-1)
|
||||
|
||||
raw_init_std = np.log(np.exp(self._init_std) - 1)
|
||||
raw_init_std = torch.log(torch.exp(self._init_std) - 1)
|
||||
action_mean = self._mean_scale * torch.tanh(mean / self._mean_scale)
|
||||
action_std = F.softplus(std + raw_init_std) + self._min_std
|
||||
|
||||
dist = self.get_dist(action_mean, action_std)
|
||||
sample = dist.rsample() #self.reparameterize(action_mean, action_std)
|
||||
sample = dist.rsample()
|
||||
return sample
|
||||
|
||||
def reparameterize(self, mu, std):
|
||||
eps = torch.randn_like(std)
|
||||
return mu + eps * std
|
||||
|
||||
|
||||
class ValueModel(nn.Module):
|
||||
def __init__(self, state_size, hidden_size, num_layers=4):
|
||||
@ -148,12 +140,11 @@ class ValueModel(nn.Module):
|
||||
self.num_layers = num_layers
|
||||
|
||||
layers = []
|
||||
for i in range(self.num_layers-1):
|
||||
for i in range(self.num_layers):
|
||||
input_channels = state_size if i == 0 else self.hidden_size
|
||||
output_channels = self.hidden_size
|
||||
output_channels = self.hidden_size if i!= self.num_layers-1 else 1
|
||||
layers.append(nn.Linear(input_channels, output_channels))
|
||||
layers.append(nn.LeakyReLU())
|
||||
layers.append(nn.Linear(self.hidden_size, int(np.prod(1))))
|
||||
self.value_model = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, state):
|
||||
@ -178,7 +169,6 @@ class RewardModel(nn.Module):
|
||||
return torch.distributions.independent.Independent(
|
||||
torch.distributions.Normal(reward, 1), 1)
|
||||
|
||||
"""
|
||||
class TransitionModel(nn.Module):
|
||||
def __init__(self, state_size, hidden_size, action_size, history_size):
|
||||
super().__init__()
|
||||
@ -190,7 +180,6 @@ class TransitionModel(nn.Module):
|
||||
self.act_fn = nn.LeakyReLU()
|
||||
|
||||
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
|
||||
self.ln = nn.LayerNorm(hidden_size)
|
||||
self.history_cell = nn.GRUCell(hidden_size + history_size, history_size)
|
||||
self.fc_state_prior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
|
||||
self.fc_state_posterior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
|
||||
@ -205,25 +194,12 @@ class TransitionModel(nn.Module):
|
||||
distribution = torch.distributions.independent.Independent(distribution, 1)
|
||||
return distribution
|
||||
|
||||
def stack_states(self, states, dim=0):
|
||||
s = dict(
|
||||
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
||||
std = torch.stack([state['std'] for state in states], dim=dim),
|
||||
sample = torch.stack([state['sample'] for state in states], dim=dim),
|
||||
history = torch.stack([state['history'] for state in states], dim=dim),)
|
||||
if 'distribution' in states:
|
||||
dist = dict(distribution = [state['distribution'] for state in states])
|
||||
s.update(dist)
|
||||
return s
|
||||
|
||||
def seq_to_batch(self, state, name):
|
||||
return dict(
|
||||
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
|
||||
|
||||
def imagine_step(self, state, action, history):
|
||||
state_action = self.ln(self.act_fn(self.fc_state_action(torch.cat([state, action], dim=-1))))
|
||||
imag_hist = self.history_cell(torch.cat([state_action, history], dim=-1), history)
|
||||
state_prior = self.fc_state_prior(torch.cat([imag_hist, state, action], dim=-1))
|
||||
def imagine_step(self, prev_state, prev_action, prev_history):
|
||||
state_action = self.act_fn(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1)))
|
||||
prev_hist = prev_history.detach()
|
||||
history = self.history_cell(torch.cat([state_action, prev_hist], dim=-1), prev_hist)
|
||||
|
||||
state_prior = self.fc_state_prior(torch.cat([history, prev_state, prev_action], dim=-1))
|
||||
state_prior_mean, state_prior_std = torch.chunk(state_prior, 2, dim=-1)
|
||||
state_prior_std = F.softplus(state_prior_std)
|
||||
|
||||
@ -232,103 +208,19 @@ class TransitionModel(nn.Module):
|
||||
|
||||
# Sampling via reparameterization Trick
|
||||
sample_state_prior = self.reparemeterize(state_prior_mean, state_prior_std)
|
||||
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": imag_hist, "distribution": state_prior_dist}
|
||||
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": history, "distribution": state_prior_dist}
|
||||
return prior
|
||||
|
||||
def imagine_rollout(self, state, action, history, horizon):
|
||||
imagined_priors = []
|
||||
for i in range(horizon):
|
||||
prior = self.imagine_step(state, action, history)
|
||||
state = prior["sample"]
|
||||
history = prior["history"]
|
||||
imagined_priors.append(prior)
|
||||
imagined_priors = self.stack_states(imagined_priors, dim=0)
|
||||
return imagined_priors
|
||||
|
||||
def observe_step(self, prev_state, prev_action, prev_history, nonterms):
|
||||
state_action = self.ln(self.act_fn(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
|
||||
current_history = self.history_cell(torch.cat([state_action, prev_history], dim=-1), prev_history)
|
||||
state_prior = self.fc_state_prior(torch.cat([prev_history, prev_state, prev_action], dim=-1))
|
||||
state_prior_mean, state_prior_std = torch.chunk(state_prior*nonterms, 2, dim=-1)
|
||||
state_prior_std = F.softplus(state_prior_std) + 0.1
|
||||
sample_state_prior = state_prior_mean + torch.randn_like(state_prior_mean) * state_prior_std
|
||||
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": current_history}
|
||||
return prior
|
||||
|
||||
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
|
||||
observed_rollout = []
|
||||
for i in range(rollout_states.shape[0]):
|
||||
actions = rollout_actions[i] * nonterms[i]
|
||||
prior = self.observe_step(rollout_states[i], actions, init_history, nonterms[i])
|
||||
init_history = prior["history"]
|
||||
observed_rollout.append(prior)
|
||||
observed_rollout = self.stack_states(observed_rollout, dim=0)
|
||||
return observed_rollout
|
||||
|
||||
def reparemeterize(self, mean, std):
|
||||
eps = torch.randn_like(std)
|
||||
return mean + eps * std
|
||||
"""
|
||||
|
||||
class TransitionModel(nn.Module):
|
||||
def __init__(self, state_size, hidden_size, action_size, history_size):
|
||||
super().__init__()
|
||||
|
||||
self.state_size = state_size
|
||||
self.hidden_size = hidden_size
|
||||
self.action_size = action_size
|
||||
self.history_size = history_size
|
||||
self.act_fn = nn.ELU()
|
||||
|
||||
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
|
||||
self.history_cell = nn.GRUCell(hidden_size, history_size)
|
||||
self.fc_state_mu = nn.Linear(history_size + hidden_size, state_size)
|
||||
self.fc_state_sigma = nn.Linear(history_size + hidden_size, state_size)
|
||||
|
||||
self.batch_norm = nn.BatchNorm1d(hidden_size)
|
||||
self.batch_norm2 = nn.BatchNorm1d(state_size)
|
||||
|
||||
self.min_sigma = 1e-4
|
||||
self.max_sigma = 1e0
|
||||
|
||||
def init_states(self, batch_size, device):
|
||||
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
|
||||
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
|
||||
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
|
||||
|
||||
def get_dist(self, mean, std):
|
||||
distribution = torch.distributions.Normal(mean, std)
|
||||
distribution = torch.distributions.independent.Independent(distribution, 1)
|
||||
return distribution
|
||||
|
||||
def stack_states(self, states, dim=0):
|
||||
s = dict(
|
||||
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
||||
std = torch.stack([state['std'] for state in states], dim=dim),
|
||||
sample = torch.stack([state['sample'] for state in states], dim=dim),
|
||||
history = torch.stack([state['history'] for state in states], dim=dim),)
|
||||
if 'distribution' in states:
|
||||
dist = dict(distribution = [state['distribution'] for state in states])
|
||||
s.update(dist)
|
||||
dist = dict(distribution = [state['distribution'] for state in states])
|
||||
s.update(dist)
|
||||
return s
|
||||
|
||||
def seq_to_batch(self, state, name):
|
||||
return dict(
|
||||
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
|
||||
|
||||
def imagine_step(self, state, action, history):
|
||||
next_state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([state, action], dim=-1))))
|
||||
imag_history = self.history_cell(next_state_action_enc, history)
|
||||
next_state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([next_state_action_enc, imag_history], dim=-1))))
|
||||
next_state_sigma = torch.sigmoid(self.fc_state_sigma(torch.cat([next_state_action_enc, imag_history], dim=-1)))
|
||||
next_state_sigma = self.min_sigma + (self.max_sigma - self.min_sigma) * next_state_sigma
|
||||
|
||||
# Normal Distribution
|
||||
next_state_dist = self.get_dist(next_state_mu, next_state_sigma)
|
||||
next_state_sample = self.reparemeterize(next_state_mu, next_state_sigma)
|
||||
prior = {"mean": next_state_mu, "std": next_state_sigma, "sample": next_state_sample, "history": imag_history, "distribution": next_state_dist}
|
||||
return prior
|
||||
|
||||
def imagine_rollout(self, state, action, history, horizon):
|
||||
imagined_priors = []
|
||||
for i in range(horizon):
|
||||
@ -339,32 +231,10 @@ class TransitionModel(nn.Module):
|
||||
imagined_priors = self.stack_states(imagined_priors, dim=0)
|
||||
return imagined_priors
|
||||
|
||||
def observe_step(self, prev_state, prev_action, prev_history):
|
||||
state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
|
||||
current_history = self.history_cell(state_action_enc, prev_history)
|
||||
state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([state_action_enc, prev_history], dim=-1))))
|
||||
state_sigma = F.softplus(self.fc_state_sigma(torch.cat([state_action_enc, prev_history], dim=-1)))
|
||||
|
||||
sample_state = state_mu + torch.randn_like(state_mu) * state_sigma
|
||||
state_enc = {"mean": state_mu, "std": state_sigma, "sample": sample_state, "history": current_history}
|
||||
return state_enc
|
||||
|
||||
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
|
||||
observed_rollout = []
|
||||
for i in range(rollout_states.shape[0]):
|
||||
rollout_states_ = rollout_states[i]
|
||||
rollout_actions_ = rollout_actions[i]
|
||||
init_history_ = nonterms[i] * init_history
|
||||
state_enc = self.observe_step(rollout_states_, rollout_actions_, init_history_)
|
||||
init_history = state_enc["history"]
|
||||
observed_rollout.append(state_enc)
|
||||
observed_rollout = self.stack_states(observed_rollout, dim=0)
|
||||
return observed_rollout
|
||||
|
||||
def reparemeterize(self, mean, std):
|
||||
eps = torch.randn_like(mean)
|
||||
eps = torch.randn_like(std)
|
||||
return mean + eps * std
|
||||
|
||||
|
||||
|
||||
class TanhBijector(torch.distributions.Transform):
|
||||
def __init__(self):
|
||||
@ -430,7 +300,6 @@ class ContrastiveHead(nn.Module):
|
||||
return logits
|
||||
|
||||
|
||||
"""
|
||||
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
|
||||
def __init__(self, last_states, current_states, negative_current_states, predicted_current_states):
|
||||
super(CLUBSample, self).__init__()
|
||||
@ -444,7 +313,7 @@ class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
|
||||
sample = state_dict["sample"] #dist.sample() # Use state_dict["sample"] if you want to use the same sample for all the losses
|
||||
mu = dist.mean
|
||||
var = dist.variance
|
||||
return mu.detach(), var.detach(), sample.detach()
|
||||
return mu, var, sample
|
||||
|
||||
def loglikeli(self):
|
||||
_, _, pred_sample = self.get_mu_var_samples(self.predicted_current_states)
|
||||
@ -461,136 +330,15 @@ class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
|
||||
random_index = torch.randperm(sample_size).long()
|
||||
|
||||
pos = (-(mu_curr - pred_sample)**2 /var_curr).sum(dim=1).mean(dim=0)
|
||||
#neg = (-(mu_curr - pred_sample[random_index])**2 /var_curr).sum(dim=1).mean(dim=0)
|
||||
neg = (-(mu_neg - pred_sample)**2 /var_neg).sum(dim=1).mean(dim=0)
|
||||
neg = (-(mu_curr - pred_sample[random_index])**2 /var_curr).sum(dim=1).mean(dim=0)
|
||||
#neg = (-(mu_neg - pred_sample)**2 /var_neg).sum(dim=1).mean(dim=0)
|
||||
upper_bound = pos - neg
|
||||
|
||||
return upper_bound/2
|
||||
|
||||
def learning_loss(self):
|
||||
return - self.loglikeli()
|
||||
"""
|
||||
|
||||
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
|
||||
def __init__(self, x_dim, y_dim, hidden_size):
|
||||
super(CLUBSample, self).__init__()
|
||||
self.p_mu = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size//2, y_dim))
|
||||
|
||||
self.p_logvar = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size//2, y_dim),
|
||||
nn.Tanh())
|
||||
|
||||
def get_mu_logvar(self, x_samples):
|
||||
mu = self.p_mu(x_samples)
|
||||
logvar = self.p_logvar(x_samples)
|
||||
return mu, logvar
|
||||
|
||||
|
||||
def loglikeli(self, x_samples, y_samples):
|
||||
mu, logvar = self.get_mu_logvar(x_samples)
|
||||
return (-(mu - y_samples)**2 /logvar.exp()-logvar).sum(dim=1).mean(dim=0)
|
||||
|
||||
|
||||
def forward(self, x_samples, y_samples, y_negatives):
|
||||
mu, logvar = self.get_mu_logvar(x_samples)
|
||||
|
||||
sample_size = x_samples.shape[0]
|
||||
#random_index = torch.randint(sample_size, (sample_size,)).long()
|
||||
random_index = torch.randperm(sample_size).long()
|
||||
|
||||
positive = -(mu - y_samples)**2 / logvar.exp()
|
||||
#negative = - (mu - y_samples[random_index])**2 / logvar.exp()
|
||||
negative = -(mu - y_negatives)**2 / logvar.exp()
|
||||
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
|
||||
return upper_bound/2.
|
||||
|
||||
def learning_loss(self, x_samples, y_samples):
|
||||
return -self.loglikeli(x_samples, y_samples)
|
||||
|
||||
|
||||
class QFunction(nn.Module):
|
||||
"""MLP for q-function."""
|
||||
def __init__(self, obs_dim, action_dim, hidden_dim):
|
||||
super().__init__()
|
||||
|
||||
self.trunk = nn.Sequential(
|
||||
nn.Linear(obs_dim + action_dim, hidden_dim), nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
|
||||
def forward(self, obs, action):
|
||||
assert obs.size(0) == action.size(0)
|
||||
|
||||
obs_action = torch.cat([obs, action], dim=1)
|
||||
return self.trunk(obs_action)
|
||||
|
||||
|
||||
class Critic(nn.Module):
|
||||
"""Critic network, employes two q-functions."""
|
||||
def __init__(
|
||||
self, obs_shape, action_shape, hidden_dim, encoder_feature_dim):
|
||||
super().__init__()
|
||||
|
||||
self.Q1 = QFunction(
|
||||
self.encoder.feature_dim, action_shape[0], hidden_dim
|
||||
)
|
||||
self.Q2 = QFunction(
|
||||
self.encoder.feature_dim, action_shape[0], hidden_dim
|
||||
)
|
||||
|
||||
self.outputs = dict()
|
||||
|
||||
def forward(self, obs, action, detach_encoder=False):
|
||||
# detach_encoder allows to stop gradient propogation to encoder
|
||||
obs = self.encoder(obs, detach=detach_encoder)
|
||||
|
||||
q1 = self.Q1(obs, action)
|
||||
q2 = self.Q2(obs, action)
|
||||
|
||||
self.outputs['q1'] = q1
|
||||
self.outputs['q2'] = q2
|
||||
|
||||
return q1, q2
|
||||
|
||||
class SampleDist:
|
||||
def __init__(self, dist, samples=100):
|
||||
self._dist = dist
|
||||
self._samples = samples
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return 'SampleDist'
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._dist, name)
|
||||
|
||||
def mean(self):
|
||||
sample = self._dist.rsample(self._samples)
|
||||
return torch.mean(sample, 0)
|
||||
|
||||
def mode(self):
|
||||
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
|
||||
sample = dist.rsample()
|
||||
logprob = dist.log_prob(sample)
|
||||
batch_size = sample.size(1)
|
||||
feature_size = sample.size(2)
|
||||
indices = torch.argmax(logprob, dim=0).reshape(1, batch_size, 1).expand(1, batch_size, feature_size)
|
||||
return torch.gather(sample, 0, indices).squeeze(0)
|
||||
|
||||
def entropy(self):
|
||||
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
|
||||
sample = dist.rsample()
|
||||
logprob = dist.log_prob(sample)
|
||||
return -torch.mean(logprob, 0)
|
||||
|
||||
def sample(self):
|
||||
return self._dist.sample()
|
||||
|
||||
|
||||
if "__name__ == __main__":
|
||||
tr = TransitionModel(50, 512, 1, 256)
|
||||
|
||||
pass
|
@ -1,51 +0,0 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
class ReplayBuffer:
|
||||
|
||||
def __init__(self, size, obs_shape, action_size, seq_len, batch_size):
|
||||
self.size = size
|
||||
self.obs_shape = obs_shape
|
||||
self.action_size = action_size
|
||||
self.seq_len = seq_len
|
||||
self.batch_size = batch_size
|
||||
self.idx = 0
|
||||
self.full = False
|
||||
self.observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||||
self.next_observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||||
self.actions = np.empty((size, action_size), dtype=np.float32)
|
||||
self.rewards = np.empty((size,), dtype=np.float32)
|
||||
self.terminals = np.empty((size,), dtype=np.float32)
|
||||
self.steps, self.episodes = 0, 0
|
||||
|
||||
def add(self, obs, ac, next_obs, rew, done):
|
||||
self.observations[self.idx] = obs
|
||||
self.next_observations[self.idx] = next_obs
|
||||
self.actions[self.idx] = ac
|
||||
self.rewards[self.idx] = rew
|
||||
self.terminals[self.idx] = done
|
||||
self.idx = (self.idx + 1) % self.size
|
||||
self.full = self.full or self.idx == 0
|
||||
self.steps += 1
|
||||
self.episodes = self.episodes + (1 if done else 0)
|
||||
|
||||
def _sample_idx(self, L):
|
||||
valid_idx = False
|
||||
while not valid_idx:
|
||||
idx = np.random.randint(0, self.size if self.full else self.idx - L)
|
||||
idxs = np.arange(idx, idx + L) % self.size
|
||||
valid_idx = not self.idx in idxs[1:]
|
||||
return idxs
|
||||
|
||||
def _retrieve_batch(self, idxs, n, L):
|
||||
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
|
||||
observations = self.observations[vec_idxs]
|
||||
next_observations = self.next_observations[vec_idxs]
|
||||
return observations.reshape(L, n, *observations.shape[1:]),self.actions[vec_idxs].reshape(L, n, -1), next_observations.reshape(L, n, *next_observations.shape[1:]), self.rewards[vec_idxs].reshape(L, n), self.terminals[vec_idxs].reshape(L, n)
|
||||
|
||||
def sample(self):
|
||||
n = self.batch_size
|
||||
l = self.seq_len
|
||||
obs,acs,nxt_obs,rews,terms= self._retrieve_batch(np.asarray([self._sample_idx(l) for _ in range(n)]), n, l)
|
||||
return obs,acs,nxt_obs,rews,terms
|
756
DPI/train.py
756
DPI/train.py
@ -6,12 +6,11 @@ import wandb
|
||||
import random
|
||||
import argparse
|
||||
import numpy as np
|
||||
from collections import OrderedDict
|
||||
|
||||
import utils
|
||||
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image, shuffle_along_axis, Logger
|
||||
from replay_buffer import ReplayBuffer
|
||||
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image
|
||||
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
|
||||
from logger import Logger
|
||||
from video import VideoRecorder
|
||||
from dmc2gym.wrappers import set_global_var
|
||||
|
||||
@ -41,22 +40,19 @@ def parse_args():
|
||||
parser.add_argument('--resource_files', type=str)
|
||||
parser.add_argument('--eval_resource_files', type=str)
|
||||
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
|
||||
parser.add_argument('--total_frames', default=5000, type=int) # 10000
|
||||
parser.add_argument('--total_frames', default=1000, type=int) # 10000
|
||||
parser.add_argument('--high_noise', action='store_true')
|
||||
# replay buffer
|
||||
parser.add_argument('--replay_buffer_capacity', default=50000, type=int) #50000
|
||||
parser.add_argument('--episode_length', default=51, type=int)
|
||||
# train
|
||||
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
|
||||
parser.add_argument('--init_steps', default=5000, type=int)
|
||||
parser.add_argument('--num_train_steps', default=100000, type=int)
|
||||
parser.add_argument('--update_steps', default=10, type=int)
|
||||
parser.add_argument('--batch_size', default=64, type=int)
|
||||
parser.add_argument('--state_size', default=100, type=int)
|
||||
parser.add_argument('--hidden_size', default=512, type=int)
|
||||
parser.add_argument('--history_size', default=256, type=int)
|
||||
parser.add_argument('--episode_collection', default=5, type=int)
|
||||
parser.add_argument('--episodes_buffer', default=5, type=int, help='Initial number of episodes to store in the buffer')
|
||||
parser.add_argument('--init_steps', default=10000, type=int)
|
||||
parser.add_argument('--num_train_steps', default=10000, type=int)
|
||||
parser.add_argument('--batch_size', default=30, type=int) #512
|
||||
parser.add_argument('--state_size', default=256, type=int)
|
||||
parser.add_argument('--hidden_size', default=128, type=int)
|
||||
parser.add_argument('--history_size', default=128, type=int)
|
||||
parser.add_argument('--num-units', type=int, default=50, help='num hidden units for reward/value/discount models')
|
||||
parser.add_argument('--load_encoder', default=None, type=str)
|
||||
parser.add_argument('--imagine_horizon', default=15, type=str)
|
||||
@ -64,33 +60,42 @@ def parse_args():
|
||||
# eval
|
||||
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
|
||||
parser.add_argument('--num_eval_episodes', default=20, type=int)
|
||||
parser.add_argument('--evaluation_interval', default=10000, type=int) # TODO: master had 10000
|
||||
# value
|
||||
parser.add_argument('--value_lr', default=8e-6, type=float)
|
||||
parser.add_argument('--value_lr', default=8e-5, type=float)
|
||||
parser.add_argument('--value_beta', default=0.9, type=float)
|
||||
parser.add_argument('--value_tau', default=0.005, type=float)
|
||||
parser.add_argument('--value_target_update_freq', default=100, type=int)
|
||||
parser.add_argument('--td_lambda', default=0.95, type=int)
|
||||
# actor
|
||||
parser.add_argument('--actor_lr', default=8e-6, type=float)
|
||||
parser.add_argument('--actor_lr', default=8e-5, type=float)
|
||||
parser.add_argument('--actor_beta', default=0.9, type=float)
|
||||
parser.add_argument('--actor_log_std_min', default=-10, type=float)
|
||||
parser.add_argument('--actor_log_std_max', default=2, type=float)
|
||||
parser.add_argument('--actor_update_freq', default=2, type=int)
|
||||
# world/encoder/decoder
|
||||
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
|
||||
parser.add_argument('--world_model_lr', default=1e-6, type=float)
|
||||
parser.add_argument('--decoder_lr', default=6e-6, type=float)
|
||||
parser.add_argument('--reward_lr', default=8e-6, type=float)
|
||||
parser.add_argument('--encoder_tau', default=0.005, type=float)
|
||||
parser.add_argument('--encoder_feature_dim', default=50, type=int)
|
||||
parser.add_argument('--world_model_lr', default=6e-4, type=float)
|
||||
parser.add_argument('--past_transition_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--encoder_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--encoder_tau', default=0.001, type=float)
|
||||
parser.add_argument('--encoder_stride', default=1, type=int)
|
||||
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
|
||||
parser.add_argument('--decoder_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--decoder_update_freq', default=1, type=int)
|
||||
parser.add_argument('--decoder_weight_lambda', default=0.0, type=float)
|
||||
parser.add_argument('--num_layers', default=4, type=int)
|
||||
parser.add_argument('--num_filters', default=32, type=int)
|
||||
parser.add_argument('--aug', action='store_true')
|
||||
# sac
|
||||
parser.add_argument('--discount', default=0.99, type=float)
|
||||
parser.add_argument('--init_temperature', default=0.01, type=float)
|
||||
parser.add_argument('--alpha_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--alpha_beta', default=0.9, type=float)
|
||||
# misc
|
||||
parser.add_argument('--seed', default=1, type=int)
|
||||
parser.add_argument('--logging_freq', default=100, type=int)
|
||||
parser.add_argument('--saving_interval', default=2500, type=int)
|
||||
parser.add_argument('--saving_interval', default=1000, type=int)
|
||||
parser.add_argument('--work_dir', default='.', type=str)
|
||||
parser.add_argument('--save_tb', default=False, action='store_true')
|
||||
parser.add_argument('--save_model', default=False, action='store_true')
|
||||
@ -121,7 +126,6 @@ class DPI:
|
||||
self.env = make_env(self.args)
|
||||
#self.args.seed = np.random.randint(0, 1000)
|
||||
self.env.seed(self.args.seed)
|
||||
self.global_episodes = 0
|
||||
|
||||
# noiseless environment setup
|
||||
self.args.version = 2 # env_id changes to v2
|
||||
@ -133,14 +137,14 @@ class DPI:
|
||||
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
|
||||
self.env = utils.ActionRepeat(self.env, self.args.action_repeat)
|
||||
self.env = utils.NormalizeActions(self.env)
|
||||
self.env = utils.TimeLimit(self.env, 1000 // args.action_repeat)
|
||||
|
||||
# create replay buffer
|
||||
self.data_buffer = ReplayBuffer(self.args.replay_buffer_capacity,
|
||||
self.env.observation_space.shape,
|
||||
self.env.action_space.shape[0],
|
||||
self.args.episode_length,
|
||||
self.args.batch_size)
|
||||
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
|
||||
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size),
|
||||
action_size=self.env.action_space.shape[0],
|
||||
seq_len=self.args.episode_length,
|
||||
batch_size=args.batch_size,
|
||||
args=self.args)
|
||||
|
||||
# create work directory
|
||||
utils.make_dir(self.args.work_dir)
|
||||
@ -157,19 +161,16 @@ class DPI:
|
||||
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
|
||||
state_size=self.args.state_size # 128
|
||||
).to(device)
|
||||
self.obs_encoder.apply(self.init_weights)
|
||||
|
||||
self.obs_encoder_momentum = ObservationEncoder(
|
||||
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
|
||||
state_size=self.args.state_size # 128
|
||||
).to(device)
|
||||
self.obs_encoder_momentum.apply(self.init_weights)
|
||||
|
||||
self.obs_decoder = ObservationDecoder(
|
||||
state_size=self.args.state_size, # 128
|
||||
output_shape=(self.args.channels*self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84)
|
||||
output_shape=(self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84)
|
||||
).to(device)
|
||||
self.obs_decoder.apply(self.init_weights)
|
||||
|
||||
self.transition_model = TransitionModel(
|
||||
state_size=self.args.state_size, # 128
|
||||
@ -177,7 +178,6 @@ class DPI:
|
||||
action_size=self.env.action_space.shape[0], # 6
|
||||
history_size=self.args.history_size, # 128
|
||||
).to(device)
|
||||
self.transition_model.apply(self.init_weights)
|
||||
|
||||
# Actor Model
|
||||
self.actor_model = Actor(
|
||||
@ -185,27 +185,22 @@ class DPI:
|
||||
hidden_size=self.args.hidden_size, # 256,
|
||||
action_size=self.env.action_space.shape[0], # 6
|
||||
).to(device)
|
||||
self.actor_model.apply(self.init_weights)
|
||||
|
||||
|
||||
|
||||
# Value Models
|
||||
self.value_model = ValueModel(
|
||||
state_size=self.args.state_size, # 128
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
).to(device)
|
||||
self.value_model.apply(self.init_weights)
|
||||
|
||||
self.target_value_model = ValueModel(
|
||||
state_size=self.args.state_size, # 128
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
).to(device)
|
||||
self.target_value_model.apply(self.init_weights)
|
||||
|
||||
self.reward_model = RewardModel(
|
||||
state_size=self.args.state_size, # 128
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
).to(device)
|
||||
self.reward_model.apply(self.init_weights)
|
||||
|
||||
# Contrastive Models
|
||||
self.prjoection_head = ProjectionHead(
|
||||
@ -223,33 +218,24 @@ class DPI:
|
||||
self.contrastive_head = ContrastiveHead(
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
).to(device)
|
||||
|
||||
self.club_sample = CLUBSample(
|
||||
x_dim=self.args.state_size, # 128
|
||||
y_dim=self.args.state_size, # 128
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
).to(device)
|
||||
|
||||
|
||||
# model parameters
|
||||
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.prjoection_head.parameters()) + \
|
||||
list(self.transition_model.parameters()) + list(self.club_sample.parameters()) + \
|
||||
list(self.contrastive_head.parameters())
|
||||
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_decoder.parameters()) + \
|
||||
list(self.value_model.parameters()) + list(self.transition_model.parameters()) + \
|
||||
list(self.prjoection_head.parameters())
|
||||
self.past_transition_parameters = self.transition_model.parameters()
|
||||
|
||||
# optimizers
|
||||
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr,eps=1e-6)
|
||||
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr,eps=1e-6)
|
||||
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr,eps=1e-6)
|
||||
self.decoder_opt = torch.optim.Adam(self.obs_decoder.parameters(), self.args.decoder_lr,eps=1e-6)
|
||||
self.reward_opt = torch.optim.Adam(self.reward_model.parameters(), self.args.reward_lr,eps=1e-6)
|
||||
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr)
|
||||
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr)
|
||||
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr)
|
||||
self.past_transition_opt = torch.optim.Adam(self.past_transition_parameters, self.args.past_transition_lr)
|
||||
|
||||
# Create Modules
|
||||
self.world_model_modules = [self.obs_encoder, self.prjoection_head, self.transition_model, self.club_sample, self.contrastive_head,
|
||||
self.obs_encoder_momentum, self.prjoection_head_momentum]
|
||||
self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.reward_model, self.transition_model, self.prjoection_head]
|
||||
self.value_modules = [self.value_model]
|
||||
self.actor_modules = [self.actor_model]
|
||||
self.decoder_modules = [self.obs_decoder]
|
||||
self.reward_modules = [self.reward_model]
|
||||
|
||||
if use_saved:
|
||||
self._use_saved_models(saved_model_dir)
|
||||
@ -259,432 +245,280 @@ class DPI:
|
||||
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
|
||||
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
|
||||
|
||||
def collect_random_sequences(self, seed_steps):
|
||||
def collect_sequences(self, episodes, random=True, actor_model=None, encoder_model=None):
|
||||
obs = self.env.reset()
|
||||
done = False
|
||||
all_rews = []
|
||||
self.global_episodes += 1
|
||||
epi_reward = 0
|
||||
for _ in tqdm.tqdm(range(seed_steps), desc='Collecting episodes'):
|
||||
action = self.env.action_space.sample()
|
||||
next_obs, rew, done, _ = self.env.step(action)
|
||||
self.data_buffer.add(obs, action, next_obs, rew, done)
|
||||
obs = next_obs
|
||||
epi_reward += rew
|
||||
if done:
|
||||
obs = self.env.reset()
|
||||
done=False
|
||||
all_rews.append(epi_reward)
|
||||
epi_reward = 0
|
||||
return all_rews
|
||||
|
||||
def collect_sequences(self, collect_steps, actor_model):
|
||||
obs = self.env.reset()
|
||||
done = False
|
||||
all_rews = []
|
||||
self.global_episodes += 1
|
||||
epi_reward = 0
|
||||
for episode_count in tqdm.tqdm(range(collect_steps), desc='Collecting episodes'):
|
||||
with torch.no_grad():
|
||||
obs_ = torch.tensor(obs.copy(), dtype=torch.float32)
|
||||
obs_ = preprocess_obs(obs_).to(device)
|
||||
#state = self.get_features(obs_)["sample"].unsqueeze(0)
|
||||
state = self.get_features(obs_)["distribution"].rsample()
|
||||
action = actor_model(state)
|
||||
action = actor_model.add_exploration(action)
|
||||
action = action.cpu().numpy()[0]
|
||||
next_obs, rew, done, _ = self.env.step(action)
|
||||
self.data_buffer.add(obs, action, next_obs, rew, done)
|
||||
|
||||
if done:
|
||||
obs = self.env.reset()
|
||||
done = False
|
||||
all_rews.append(epi_reward)
|
||||
epi_reward = 0
|
||||
else:
|
||||
obs = next_obs
|
||||
all_rews = []
|
||||
#video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files)
|
||||
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
|
||||
if args.save_video:
|
||||
self.env.video.init(enabled=True)
|
||||
|
||||
epi_reward = 0
|
||||
for i in range(self.args.episode_length):
|
||||
if random:
|
||||
action = self.env.action_space.sample()
|
||||
else:
|
||||
with torch.no_grad():
|
||||
obs_torch = torch.unsqueeze(torch.tensor(obs).float(),0).to(device)
|
||||
state = self.obs_encoder(obs_torch)["distribution"].sample()
|
||||
action = self.actor_model(state).cpu().detach().numpy().squeeze()
|
||||
|
||||
next_obs, rew, done, _ = self.env.step(action)
|
||||
self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done)
|
||||
|
||||
if args.save_video:
|
||||
self.env.video.record(self.env)
|
||||
|
||||
if done or i == self.args.episode_length-1:
|
||||
obs = self.env.reset()
|
||||
done=False
|
||||
else:
|
||||
obs = next_obs
|
||||
epi_reward += rew
|
||||
all_rews.append(epi_reward)
|
||||
if args.save_video:
|
||||
self.env.video.save('noisy/%d.mp4' % episode_count)
|
||||
print("Collected {} random episodes".format(episode_count+1))
|
||||
return all_rews
|
||||
|
||||
def train(self, step, total_steps):
|
||||
# logger
|
||||
logdir = os.path.dirname(os.path.realpath(__file__)) + "/log/logs/"
|
||||
if not(os.path.exists(logdir)):
|
||||
os.makedirs(logdir)
|
||||
initial_logs = OrderedDict()
|
||||
logger = Logger(logdir)
|
||||
|
||||
episodic_rews = self.collect_random_sequences(self.args.init_steps//args.action_repeat)
|
||||
self.global_step = self.data_buffer.steps
|
||||
|
||||
initial_logs.update({
|
||||
'train_avg_reward':np.mean(episodic_rews),
|
||||
'train_max_reward': np.max(episodic_rews),
|
||||
'train_min_reward': np.min(episodic_rews),
|
||||
'train_std_reward':np.std(episodic_rews),
|
||||
})
|
||||
logger.log_scalars(initial_logs, step=0)
|
||||
logger.flush()
|
||||
|
||||
|
||||
while self.global_step < total_steps:
|
||||
logs = OrderedDict()
|
||||
step += 1
|
||||
for update_steps in range(self.args.update_steps):
|
||||
model_loss, actor_loss, value_loss, actor_model = self.update((step-1)*args.update_steps + update_steps)
|
||||
counter = 0
|
||||
while step < total_steps:
|
||||
|
||||
initial_logs.update({
|
||||
'model_loss' : model_loss,
|
||||
'actor_loss': actor_loss,
|
||||
'value_loss': value_loss,
|
||||
'train_avg_reward':np.mean(episodic_rews),
|
||||
'train_max_reward': np.max(episodic_rews),
|
||||
'train_min_reward': np.min(episodic_rews),
|
||||
'train_std_reward':np.std(episodic_rews),
|
||||
})
|
||||
logger.log_scalars(logs, self.global_step)
|
||||
# collect experience
|
||||
if step !=0:
|
||||
encoder = self.obs_encoder
|
||||
actor = self.actor_model
|
||||
#all_rews = self.collect_sequences(self.args.batch_size, random=True)
|
||||
all_rews = self.collect_sequences(self.args.batch_size, random=False, actor_model=actor, encoder_model=encoder)
|
||||
else:
|
||||
all_rews = self.collect_sequences(self.args.batch_size, random=True)
|
||||
|
||||
# Group by steps and sample random batch
|
||||
random_indices = self.data_buffer.sample_random_idx(self.args.batch_size * ((step//self.args.collection_interval)+1)) # random indices for batch
|
||||
#random_indices = np.arange(self.args.batch_size * ((step//self.args.collection_interval)),self.args.batch_size * ((step//self.args.collection_interval)+1))
|
||||
last_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"observations", "cpu", random_indices=random_indices)
|
||||
current_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", random_indices=random_indices)
|
||||
next_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", offset=1, random_indices=random_indices)
|
||||
actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, random_indices=random_indices)
|
||||
next_actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, offset=1, random_indices=random_indices)
|
||||
rewards = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"rewards", device=device, is_obs=False, offset=1, random_indices=random_indices)
|
||||
|
||||
print("########## Global Step:", self.global_step, " ##########")
|
||||
for key, value in initial_logs.items():
|
||||
print(key, " : ", value)
|
||||
|
||||
episodic_rews = self.collect_sequences(1000//self.args.action_repeat, actor_model)
|
||||
# Preprocessing
|
||||
last_observations = preprocess_obs(last_observations).to(device)
|
||||
current_observations = preprocess_obs(current_observations).to(device)
|
||||
next_observations = preprocess_obs(next_observations).to(device)
|
||||
|
||||
if self.global_step % 3150 == 0 and self.data_buffer.steps!=0: #self.args.evaluation_interval == 0:
|
||||
print("Saving model")
|
||||
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
|
||||
self.save_models(path)
|
||||
self.evaluate()
|
||||
|
||||
self.global_step = self.data_buffer.steps * self.args.action_repeat
|
||||
# Initialize transition model states
|
||||
self.transition_model.init_states(self.args.batch_size, device) # (N,128)
|
||||
self.history = self.transition_model.prev_history # (N,128)
|
||||
|
||||
"""
|
||||
# collect experience
|
||||
if step !=0:
|
||||
encoder = self.obs_encoder
|
||||
actor = self.actor_model
|
||||
all_rews = self.collect_sequences(self.args.episode_collection, actor_model=actor, encoder_model=encoder)
|
||||
"""
|
||||
# Train encoder
|
||||
if step == 0:
|
||||
step += 1
|
||||
for _ in range(self.args.collection_interval // self.args.episode_length+1):
|
||||
counter += 1
|
||||
for i in range(self.args.episode_length-1):
|
||||
if i > 0:
|
||||
# Encode observations and next_observations
|
||||
self.last_states_dict = self.get_features(last_observations[i])
|
||||
self.current_states_dict = self.get_features(current_observations[i])
|
||||
self.next_states_dict = self.get_features(next_observations[i], momentum=True)
|
||||
self.action = actions[i] # (N,6)
|
||||
self.next_action = next_actions[i] # (N,6)
|
||||
history = self.transition_model.prev_history
|
||||
|
||||
# Encode negative observations
|
||||
idx = torch.randperm(current_observations[i].shape[0]) # random permutation on batch
|
||||
random_time_index = torch.randint(0, self.args.episode_length-2, (1,)).item() # random time index
|
||||
negative_current_observations = current_observations[random_time_index][idx]
|
||||
self.negative_current_states_dict = self.obs_encoder(negative_current_observations)
|
||||
|
||||
def collect_batch(self):
|
||||
obs_, acs_, nxt_obs_, rews_, terms_ = self.data_buffer.sample()
|
||||
# Predict current state from past state with transition model
|
||||
last_states_sample = self.last_states_dict["sample"]
|
||||
predicted_current_state_dict = self.transition_model.imagine_step(last_states_sample, self.action, self.history)
|
||||
self.history = predicted_current_state_dict["history"]
|
||||
|
||||
obs = torch.tensor(obs_, dtype=torch.float32)[1:]
|
||||
last_obs = torch.tensor(obs_, dtype=torch.float32)[:-1]
|
||||
nxt_obs = torch.tensor(nxt_obs_, dtype=torch.float32)[1:]
|
||||
acs = torch.tensor(acs_, dtype=torch.float32)[:-1].to(device)
|
||||
nxt_acs = torch.tensor(acs_, dtype=torch.float32)[1:].to(device)
|
||||
rews = torch.tensor(rews_, dtype=torch.float32)[:-1].to(device).unsqueeze(-1)
|
||||
nonterms = torch.tensor((1.0-terms_), dtype=torch.float32)[:-1].to(device).unsqueeze(-1)
|
||||
# Calculate upper bound loss
|
||||
likeli_loss, ub_loss = self._upper_bound_minimization(self.last_states_dict,
|
||||
self.current_states_dict,
|
||||
self.negative_current_states_dict,
|
||||
predicted_current_state_dict
|
||||
)
|
||||
|
||||
# Calculate encoder loss
|
||||
encoder_loss = self._past_encoder_loss(self.current_states_dict,
|
||||
predicted_current_state_dict)
|
||||
|
||||
last_obs = preprocess_obs(last_obs).to(device)
|
||||
obs = preprocess_obs(obs).to(device)
|
||||
nxt_obs = preprocess_obs(nxt_obs).to(device)
|
||||
# contrastive projection
|
||||
vec_anchor = predicted_current_state_dict["sample"]
|
||||
vec_positive = self.next_states_dict["sample"].detach()
|
||||
z_anchor = self.prjoection_head(vec_anchor, self.action)
|
||||
z_positive = self.prjoection_head_momentum(vec_positive, next_actions[i]).detach()
|
||||
|
||||
return last_obs, obs, nxt_obs, acs, rews, nxt_acs, nonterms
|
||||
# contrastive loss
|
||||
logits = self.contrastive_head(z_anchor, z_positive)
|
||||
labels = torch.arange(logits.shape[0]).long().to(device)
|
||||
lb_loss = F.cross_entropy(logits, labels)
|
||||
|
||||
# behaviour learning
|
||||
with FreezeParameters(self.world_model_modules):
|
||||
imagine_horizon = self.args.imagine_horizon #np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
|
||||
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(),
|
||||
self.next_action, self.history.detach(),
|
||||
imagine_horizon)
|
||||
|
||||
# decoder loss
|
||||
horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
|
||||
obs_dist = self.obs_decoder(imagined_rollout["sample"][:horizon])
|
||||
decoder_loss = -torch.mean(obs_dist.log_prob(next_observations[i:i+horizon][:,:,:3,:,:]))
|
||||
|
||||
def update(self, step):
|
||||
last_observations, current_observations, next_observations, actions, rewards, next_actions, nonterms = self.collect_batch()
|
||||
# reward loss
|
||||
reward_dist = self.reward_model(self.current_states_dict["sample"])
|
||||
reward_loss = -torch.mean(reward_dist.log_prob(rewards[:-1]))
|
||||
|
||||
#last_observations, current_observations, next_observations, actions, next_actions, rewards = self.select_one_batch()
|
||||
# update models
|
||||
world_model_loss = encoder_loss + 100 * ub_loss + lb_loss + reward_loss + decoder_loss * 1e-2
|
||||
self.world_model_opt.zero_grad()
|
||||
world_model_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
|
||||
self.world_model_opt.step()
|
||||
|
||||
# update momentum encoder
|
||||
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
|
||||
|
||||
world_loss, enc_loss, rew_loss, dec_loss, ub_loss, lb_loss = self.world_model_losses(last_observations,
|
||||
current_observations,
|
||||
next_observations,
|
||||
actions,
|
||||
next_actions,
|
||||
rewards,
|
||||
nonterms)
|
||||
self.world_model_opt.zero_grad()
|
||||
world_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
|
||||
self.world_model_opt.step()
|
||||
# update momentum projection head
|
||||
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
|
||||
|
||||
self.decoder_opt.zero_grad()
|
||||
dec_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.obs_decoder.parameters(), self.args.grad_clip_norm)
|
||||
self.decoder_opt.step()
|
||||
# actor loss
|
||||
with FreezeParameters(self.world_model_modules + self.value_modules):
|
||||
imag_rew_dist = self.reward_model(imagined_rollout["sample"])
|
||||
target_imag_val_dist = self.target_value_model(imagined_rollout["sample"])
|
||||
|
||||
self.reward_opt.zero_grad()
|
||||
rew_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.reward_model.parameters(), self.args.grad_clip_norm)
|
||||
self.reward_opt.step()
|
||||
|
||||
actor_loss = self.actor_model_losses()
|
||||
self.actor_opt.zero_grad()
|
||||
actor_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
|
||||
self.actor_opt.step()
|
||||
imag_rews = imag_rew_dist.mean
|
||||
target_imag_vals = target_imag_val_dist.mean
|
||||
|
||||
value_loss = self.value_model_losses()
|
||||
self.value_opt.zero_grad()
|
||||
value_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm)
|
||||
self.value_opt.step()
|
||||
discounts = self.args.discount * torch.ones_like(imag_rews).detach()
|
||||
|
||||
self.target_returns = self._compute_lambda_return(imag_rews[:-1],
|
||||
target_imag_vals[:-1],
|
||||
discounts[:-1] ,
|
||||
self.args.td_lambda,
|
||||
target_imag_vals[-1])
|
||||
|
||||
# update momentum encoder and projection head
|
||||
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
|
||||
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
|
||||
discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0)
|
||||
self.discounts = torch.cumprod(discounts, 0).detach()
|
||||
actor_loss = -torch.mean(self.discounts * self.target_returns)
|
||||
|
||||
# update target value networks
|
||||
#if step % self.args.value_target_update_freq == 0:
|
||||
# self.target_value_model = copy.deepcopy(self.value_model)
|
||||
# update actor
|
||||
self.actor_opt.zero_grad()
|
||||
actor_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
|
||||
self.actor_opt.step()
|
||||
|
||||
# value loss
|
||||
with torch.no_grad():
|
||||
value_feat = imagined_rollout["sample"][:-1].detach()
|
||||
value_targ = self.target_returns.detach()
|
||||
|
||||
if step % self.args.logging_freq:
|
||||
writer.add_scalar('World Loss/World Loss', world_loss.detach().item(), step)
|
||||
writer.add_scalar('Main Models Loss/Encoder Loss', enc_loss.detach().item(), step)
|
||||
writer.add_scalar('Main Models Loss/Decoder Loss', dec_loss.detach().item(), step)
|
||||
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), step)
|
||||
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step)
|
||||
writer.add_scalar('Actor Critic Loss/Reward Loss', rew_loss.detach().item(), step)
|
||||
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), step)
|
||||
writer.add_scalar('Bound Loss/Lower Bound Loss', -lb_loss.detach().item(), step)
|
||||
value_dist = self.value_model(value_feat)
|
||||
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
|
||||
|
||||
# update value
|
||||
self.value_opt.zero_grad()
|
||||
value_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm)
|
||||
self.value_opt.step()
|
||||
|
||||
return world_loss.item(), actor_loss.item(), value_loss.item(), self.actor_model
|
||||
|
||||
def world_model_losses(self, last_obs, curr_obs, nxt_obs, actions, nxt_actions, rewards, nonterms):
|
||||
# get features
|
||||
self.last_state_feat = self.get_features(last_obs)
|
||||
self.curr_state_feat = self.get_features(curr_obs)
|
||||
self.nxt_state_feat = self.get_features(nxt_obs)
|
||||
self.nxt_state_feat_lb = self.get_features(nxt_obs, momentum=True)
|
||||
# update target value
|
||||
if step % self.args.value_target_update_freq == 0:
|
||||
self.target_value_model = copy.deepcopy(self.value_model)
|
||||
|
||||
# counter for reward
|
||||
count = np.arange((counter-1) * (self.args.batch_size), (counter) * (self.args.batch_size))
|
||||
|
||||
# states
|
||||
self.last_state_enc = self.last_state_feat["distribution"].rsample() #self.last_state_feat["sample"]
|
||||
self.curr_state_enc = self.curr_state_feat["distribution"].rsample() #self.curr_state_feat["sample"]
|
||||
self.nxt_state_enc = self.nxt_state_feat["distribution"].rsample() #self.nxt_state_feat["sample"]
|
||||
self.nxt_state_enc_lb = self.nxt_state_feat_lb["distribution"].rsample() #self.nxt_state_feat_lb["sample"]
|
||||
|
||||
if step % self.args.logging_freq:
|
||||
writer.add_scalar('World Loss/World Loss', world_model_loss.detach().item(), step)
|
||||
writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss.detach().item(), step)
|
||||
writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, step)
|
||||
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), step)
|
||||
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step)
|
||||
writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss.detach().item(), step)
|
||||
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), step)
|
||||
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss.detach().item(), step)
|
||||
|
||||
step += 1
|
||||
if step>total_steps:
|
||||
print("Training finished")
|
||||
break
|
||||
|
||||
# save model
|
||||
if step % self.args.saving_interval == 0:
|
||||
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
|
||||
self.save_models(path)
|
||||
|
||||
# predict next states
|
||||
self.transition_model.init_states(self.args.batch_size, device) # (N,128)
|
||||
self.observed_rollout = self.transition_model.observe_rollout(self.last_state_enc, actions, self.transition_model.prev_history, nonterms)
|
||||
self.pred_curr_state_dist = self.transition_model.get_dist(self.observed_rollout["mean"], self.observed_rollout["std"])
|
||||
self.pred_curr_state_enc = self.pred_curr_state_dist.rsample() #self.observed_rollout["sample"]
|
||||
#torch.cuda.empty_cache() # memory leak issues
|
||||
|
||||
for j in range(len(all_rews)):
|
||||
writer.add_scalar('Rewards/Rewards', all_rews[j], count[j])
|
||||
|
||||
|
||||
# encoder loss
|
||||
enc_loss = self._encoder_loss(self.curr_state_feat["distribution"], self.pred_curr_state_dist)
|
||||
def evaluate(self, env, eval_episodes, render=False):
|
||||
|
||||
# reward loss
|
||||
rew_dist = self.reward_model(self.curr_state_enc.detach())
|
||||
#print(torch.cat([rew_dist.mean[0], rewards[0]],dim=-1))
|
||||
rew_loss = -torch.mean(rew_dist.log_prob(rewards))
|
||||
episode_rew = np.zeros((eval_episodes))
|
||||
|
||||
# decoder loss
|
||||
dec_dist = self.obs_decoder(self.nxt_state_enc.detach())
|
||||
dec_loss = -torch.mean(dec_dist.log_prob(nxt_obs))
|
||||
video_images = [[] for _ in range(eval_episodes)]
|
||||
|
||||
# upper bound loss
|
||||
past_ub_loss = 0
|
||||
for i in range(self.curr_state_enc.shape[0]):
|
||||
_, ub_loss = self._upper_bound_minimization(self.curr_state_enc[i],
|
||||
self.pred_curr_state_enc[i])
|
||||
ub_loss = ub_loss + past_ub_loss
|
||||
past_ub_loss = ub_loss
|
||||
ub_loss = ub_loss / self.curr_state_enc.shape[0]
|
||||
ub_loss = 1 * ub_loss
|
||||
|
||||
# lower bound loss
|
||||
# contrastive projection
|
||||
vec_anchor = self.pred_curr_state_enc.detach()
|
||||
vec_positive = self.nxt_state_enc_lb.detach()
|
||||
z_anchor = self.prjoection_head(vec_anchor, nxt_actions)
|
||||
z_positive = self.prjoection_head_momentum(vec_positive, nxt_actions)
|
||||
|
||||
# contrastive loss
|
||||
past_lb_loss = 0
|
||||
for i in range(z_anchor.shape[0]):
|
||||
logits = self.contrastive_head(z_anchor[i], z_positive[i])
|
||||
labels = torch.arange(logits.shape[0]).long().to(device)
|
||||
lb_loss = F.cross_entropy(logits, labels) + past_lb_loss
|
||||
past_lb_loss = lb_loss.detach().item()
|
||||
lb_loss = -0.01 * lb_loss/(z_anchor.shape[0])
|
||||
|
||||
world_loss = enc_loss + ub_loss + lb_loss
|
||||
|
||||
return world_loss, enc_loss , rew_loss, dec_loss, ub_loss, lb_loss
|
||||
|
||||
def actor_model_losses(self):
|
||||
with torch.no_grad():
|
||||
#curr_state_enc = self.curr_state_enc.reshape(self.args.episode_length-1,-1) #self.transition_model.seq_to_batch(self.curr_state_feat, "sample")["sample"]
|
||||
#curr_state_hist = self.observed_rollout["history"].reshape(self.args.episode_length-1,-1) #self.transition_model.seq_to_batch(self.observed_rollout, "history")["sample"]
|
||||
curr_state_enc = self.curr_state_enc.reshape(-1, self.args.state_size)
|
||||
curr_state_hist = self.observed_rollout["history"].reshape(-1, self.args.history_size)
|
||||
|
||||
with FreezeParameters(self.world_model_modules + self.decoder_modules + self.reward_modules + self.value_modules):
|
||||
imagine_horizon = self.args.imagine_horizon
|
||||
action = self.actor_model(curr_state_enc.detach())
|
||||
self.imagined_rollout = self.transition_model.imagine_rollout(curr_state_enc,
|
||||
action, curr_state_hist.detach(),
|
||||
imagine_horizon)
|
||||
self.pred_nxt_state_dist = self.transition_model.get_dist(self.imagined_rollout["mean"], self.imagined_rollout["std"])
|
||||
self.pred_nxt_state_enc = self.pred_nxt_state_dist.rsample() #self.transition_model.reparemeterize(self.imagined_rollout["mean"], self.imagined_rollout["std"])
|
||||
|
||||
with FreezeParameters(self.world_model_modules + self.value_modules + self.decoder_modules + self.reward_modules):
|
||||
imag_rewards_dist = self.reward_model(self.pred_nxt_state_enc)
|
||||
imag_values_dist = self.value_model(self.pred_nxt_state_enc)
|
||||
imag_rewards = imag_rewards_dist.mean
|
||||
imag_values = imag_values_dist.mean
|
||||
#print(torch.cat([imag_rewards[0], imag_values[0]],dim=-1))
|
||||
discounts = self.args.discount * torch.ones_like(imag_rewards).detach()
|
||||
|
||||
self.returns = self._compute_lambda_return(imag_rewards[:-1],
|
||||
imag_values[:-1],
|
||||
discounts[:-1] ,
|
||||
self.args.td_lambda,
|
||||
imag_values[-1])
|
||||
discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0)
|
||||
self.discounts = torch.cumprod(discounts, 0).detach()
|
||||
actor_loss = -torch.mean(self.discounts * self.returns)
|
||||
return actor_loss
|
||||
|
||||
def value_model_losses(self):
|
||||
with torch.no_grad():
|
||||
value_feat = self.pred_nxt_state_enc[:-1].detach()
|
||||
value_targ = self.returns.detach()
|
||||
value_dist = self.value_model(value_feat)
|
||||
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
|
||||
return value_loss
|
||||
|
||||
def select_one_batch(self):
|
||||
# collect sequences
|
||||
non_zero_indices = np.nonzero(self.data_buffer.episode_count)[0]
|
||||
current_obs = self.data_buffer.observations[non_zero_indices]
|
||||
next_obs = self.data_buffer.next_observations[non_zero_indices]
|
||||
actions_raw = self.data_buffer.actions[non_zero_indices]
|
||||
rewards = self.data_buffer.rewards[non_zero_indices]
|
||||
self.terms = np.where(self.data_buffer.terminals[non_zero_indices]!=False)[0]
|
||||
|
||||
# group by episodes
|
||||
current_obs = self.grouped_arrays(current_obs)
|
||||
next_obs = self.grouped_arrays(next_obs)
|
||||
actions_raw = self.grouped_arrays(actions_raw)
|
||||
rewards_ = self.grouped_arrays(rewards)
|
||||
|
||||
# select random chunks of episodes
|
||||
if current_obs.shape[0] < self.args.batch_size:
|
||||
random_episode_number = np.random.randint(0, current_obs.shape[0], self.args.batch_size)
|
||||
else:
|
||||
random_episode_number = random.sample(range(current_obs.shape[0]), self.args.batch_size)
|
||||
|
||||
# select random starting points
|
||||
if current_obs[0].shape[0]-self.args.episode_length < self.args.batch_size:
|
||||
init_index = np.random.randint(0, current_obs[0].shape[0]-self.args.episode_length-2, self.args.batch_size)
|
||||
else:
|
||||
init_index = np.asarray(random.sample(range(current_obs[0].shape[0]-self.args.episode_length), self.args.batch_size))
|
||||
|
||||
# shuffle
|
||||
random.shuffle(random_episode_number)
|
||||
random.shuffle(init_index)
|
||||
|
||||
# select first k elements
|
||||
last_observations = self.select_first_k(current_obs, init_index, random_episode_number)[:-1]
|
||||
current_observations = self.select_first_k(current_obs, init_index, random_episode_number)[1:]
|
||||
next_observations = self.select_first_k(next_obs, init_index, random_episode_number)[:-1]
|
||||
actions = self.select_first_k(actions_raw, init_index, random_episode_number)[:-1].to(device)
|
||||
next_actions = self.select_first_k(actions_raw, init_index, random_episode_number)[1:].to(device)
|
||||
rewards = self.select_first_k(rewards_, init_index, random_episode_number)[:-1].to(device)
|
||||
|
||||
# preprocessing
|
||||
last_observations = preprocess_obs(last_observations).to(device)
|
||||
current_observations = preprocess_obs(current_observations).to(device)
|
||||
next_observations = preprocess_obs(next_observations).to(device)
|
||||
|
||||
return last_observations, current_observations, next_observations, actions, next_actions, rewards
|
||||
|
||||
def evaluate(self, eval_episodes=10):
|
||||
path = path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
|
||||
self.restore_checkpoint(path)
|
||||
|
||||
obs = self.env.reset()
|
||||
done = False
|
||||
|
||||
#video = VideoRecorder(self.video_dir, resource_files=self.args.resource_files)
|
||||
if self.args.save_video:
|
||||
self.env.video.init(enabled=True)
|
||||
episodic_rewards = []
|
||||
for episode in range(eval_episodes):
|
||||
rewards = 0
|
||||
for i in range(eval_episodes):
|
||||
obs = env.reset()
|
||||
done = False
|
||||
prev_state = self.rssm.init_state(1, self.device)
|
||||
prev_action = torch.zeros(1, self.action_size).to(self.device)
|
||||
|
||||
while not done:
|
||||
with torch.no_grad():
|
||||
obs = torch.tensor(obs.copy(), dtype=torch.float32).unsqueeze(0)
|
||||
obs_processed = preprocess_obs(obs).to(device)
|
||||
state = self.get_features(obs_processed)["distribution"].rsample()
|
||||
action = self.actor_model(state).cpu().detach().numpy().squeeze()
|
||||
next_obs, rew, done, _ = self.env.step(action)
|
||||
rewards += rew
|
||||
posterior, action = self.act_with_world_model(obs, prev_state, prev_action)
|
||||
action = action[0].cpu().numpy()
|
||||
next_obs, rew, done, _ = env.step(action)
|
||||
prev_state = posterior
|
||||
prev_action = torch.tensor(action, dtype=torch.float32).to(self.device).unsqueeze(0)
|
||||
|
||||
episode_rew[i] += rew
|
||||
|
||||
if render:
|
||||
video_images[i].append(obs['image'].transpose(1,2,0).copy())
|
||||
obs = next_obs
|
||||
return episode_rew, np.array(video_images[:self.args.max_videos_to_save])
|
||||
|
||||
if self.args.save_video:
|
||||
self.env.video.record(self.env)
|
||||
self.env.video.save('/home/vedant/Curiosity/Curiosity/DPI/log/video/learned_model.mp4')
|
||||
obs = self.env.reset()
|
||||
episodic_rewards.append(rewards)
|
||||
print("Episodic rewards: ", episodic_rewards)
|
||||
print("Average episodic reward: ", np.mean(episodic_rewards))
|
||||
|
||||
def init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
torch.nn.init.xavier_uniform_(m.weight)
|
||||
m.bias.data.fill_(0.01)
|
||||
|
||||
|
||||
def grouped_arrays(self,array):
|
||||
indices = [0] + self.terms.tolist()
|
||||
def subarrays():
|
||||
for start, end in zip(indices[:-1], indices[1:]):
|
||||
yield array[start:end]
|
||||
try:
|
||||
subarrays = np.stack(list(subarrays()), axis=0)
|
||||
except ValueError:
|
||||
subarrays = np.asarray(list(subarrays()))
|
||||
|
||||
return subarrays
|
||||
|
||||
def select_first_k(self, array, init_index, episode_number):
|
||||
term_index = init_index + self.args.episode_length
|
||||
|
||||
array = array[episode_number]
|
||||
|
||||
array_list = []
|
||||
for i in range(array.shape[0]):
|
||||
array_list.append(array[i][init_index[i]:term_index[i]])
|
||||
array = np.asarray(array_list)
|
||||
if array.ndim == 5:
|
||||
transposed_array = np.transpose(array, (1, 0, 2, 3, 4))
|
||||
elif array.ndim == 4:
|
||||
transposed_array = np.transpose(array, (1, 0, 2, 3))
|
||||
elif array.ndim == 3:
|
||||
transposed_array = np.transpose(array, (1, 0, 2))
|
||||
elif array.ndim == 2:
|
||||
transposed_array = np.transpose(array, (1, 0))
|
||||
else:
|
||||
transposed_array = np.expand_dims(array, axis=0)
|
||||
|
||||
#return torch.tensor(array).float()
|
||||
return torch.tensor(transposed_array).float()
|
||||
|
||||
def _upper_bound_minimization(self, current_states, predicted_current_states):
|
||||
current_negative_states = shuffle_along_axis(current_states.clone(), axis=0)
|
||||
current_negative_states = shuffle_along_axis(current_negative_states, axis=1)
|
||||
club_loss = self.club_sample(current_states, predicted_current_states, current_negative_states)
|
||||
likelihood_loss = 0
|
||||
def _upper_bound_minimization(self, last_states, current_states, negative_current_states, predicted_current_states):
|
||||
club_sample = CLUBSample(last_states,
|
||||
current_states,
|
||||
negative_current_states,
|
||||
predicted_current_states)
|
||||
likelihood_loss = club_sample.learning_loss()
|
||||
club_loss = club_sample()
|
||||
return likelihood_loss, club_loss
|
||||
|
||||
def _encoder_loss(self, curr_states_dist, predicted_curr_states_dist):
|
||||
def _past_encoder_loss(self, curr_states_dict, predicted_curr_states_dict):
|
||||
# current state distribution
|
||||
curr_states_dist = curr_states_dict["distribution"]
|
||||
|
||||
# predicted current state distribution
|
||||
predicted_curr_states_dist = predicted_curr_states_dict["distribution"]
|
||||
|
||||
# KL divergence loss
|
||||
loss = torch.mean(torch.distributions.kl.kl_divergence(curr_states_dist,predicted_curr_states_dist))
|
||||
loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean()
|
||||
|
||||
return loss
|
||||
|
||||
def get_features(self, x, momentum=False):
|
||||
if self.args.aug:
|
||||
crop_transform = T.RandomCrop(size=80)
|
||||
cropped_x = torch.stack([crop_transform(x[i]) for i in range(x.size(0))])
|
||||
padding = (2, 2, 2, 2)
|
||||
x = F.pad(cropped_x, padding)
|
||||
x = T.RandomCrop((80, 80))(x) # (None,80,80,4)
|
||||
x = T.functional.pad(x, (4, 4, 4, 4), "symmetric") # (None,88,88,4)
|
||||
x = T.RandomCrop((84, 84))(x) # (None,84,84,4)
|
||||
|
||||
with torch.no_grad():
|
||||
if momentum:
|
||||
@ -694,19 +528,6 @@ class DPI:
|
||||
return x
|
||||
|
||||
def _compute_lambda_return(self, rewards, values, discounts, td_lam, last_value):
|
||||
next_values = torch.cat([values[1:], last_value[None]], 0)
|
||||
target = rewards + discounts * next_values * (1 - td_lam)
|
||||
timesteps = list(range(rewards.shape[0] - 1, -1, -1))
|
||||
outputs = []
|
||||
accumulated_reward = last_value
|
||||
for t in timesteps:
|
||||
inp = target[t]
|
||||
discount_factor = discounts[t]
|
||||
accumulated_reward = inp + discount_factor * td_lam * accumulated_reward
|
||||
outputs.append(accumulated_reward)
|
||||
returns = torch.flip(torch.stack(outputs), [0])
|
||||
return returns
|
||||
"""
|
||||
next_values = torch.cat([values[1:], last_value.unsqueeze(0)],0)
|
||||
targets = rewards + discounts * next_values * (1-td_lam)
|
||||
rets =[]
|
||||
@ -718,25 +539,6 @@ class DPI:
|
||||
|
||||
returns = torch.flip(torch.stack(rets), [0])
|
||||
return returns
|
||||
"""
|
||||
|
||||
def lambda_return(self,imged_reward, value_pred, bootstrap, discount=0.99, lambda_=0.95):
|
||||
# Setting lambda=1 gives a discounted Monte Carlo return.
|
||||
# Setting lambda=0 gives a fixed 1-step return.
|
||||
next_values = torch.cat([value_pred[1:], bootstrap[None]], 0)
|
||||
discount_tensor = discount * torch.ones_like(imged_reward) # pcont
|
||||
inputs = imged_reward + discount_tensor * next_values * (1 - lambda_)
|
||||
last = bootstrap
|
||||
indices = reversed(range(len(inputs)))
|
||||
outputs = []
|
||||
for index in indices:
|
||||
inp, disc = inputs[index], discount_tensor[index]
|
||||
last = inp + disc * lambda_ * last
|
||||
outputs.append(last)
|
||||
outputs = list(reversed(outputs))
|
||||
outputs = torch.stack(outputs, 0)
|
||||
returns = outputs
|
||||
return returns
|
||||
|
||||
def save_models(self, save_path):
|
||||
torch.save(
|
||||
@ -748,17 +550,6 @@ class DPI:
|
||||
'actor_optimizer': self.actor_opt.state_dict(),
|
||||
'value_optimizer': self.value_opt.state_dict(),
|
||||
'world_model_optimizer': self.world_model_opt.state_dict(),}, save_path)
|
||||
|
||||
def restore_checkpoint(self, ckpt_path):
|
||||
checkpoint = torch.load(ckpt_path)
|
||||
self.transition_model.load_state_dict(checkpoint['rssm'])
|
||||
self.actor_model.load_state_dict(checkpoint['actor'])
|
||||
self.reward_model.load_state_dict(checkpoint['reward_model'])
|
||||
self.obs_encoder.load_state_dict(checkpoint['obs_encoder'])
|
||||
self.obs_decoder.load_state_dict(checkpoint['obs_decoder'])
|
||||
self.world_model_opt.load_state_dict(checkpoint['world_model_optimizer'])
|
||||
self.actor_opt.load_state_dict(checkpoint['actor_optimizer'])
|
||||
self.value_opt.load_state_dict(checkpoint['value_optimizer'])
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
@ -769,7 +560,6 @@ if __name__ == '__main__':
|
||||
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
step = 0
|
||||
total_steps = 2000000
|
||||
total_steps = 10000
|
||||
dpi = DPI(args)
|
||||
dpi.train(step,total_steps)
|
||||
dpi.evaluate()
|
||||
dpi.train(step,total_steps)
|
179
DPI/utils.py
179
DPI/utils.py
@ -1,13 +1,10 @@
|
||||
import os
|
||||
import random
|
||||
import pickle
|
||||
import numpy as np
|
||||
from collections import deque
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
|
||||
import gym
|
||||
import dmc2gym
|
||||
@ -63,6 +60,17 @@ def make_dir(dir_path):
|
||||
return dir_path
|
||||
|
||||
|
||||
def preprocess_obs(obs, bits=5):
|
||||
"""Preprocessing image, see https://arxiv.org/abs/1807.03039."""
|
||||
bins = 2**bits
|
||||
assert obs.dtype == torch.float32
|
||||
if bits < 8:
|
||||
obs = torch.floor(obs / 2**(8 - bits))
|
||||
obs = obs / bins
|
||||
obs = obs + torch.rand_like(obs) / bins
|
||||
obs = obs - 0.5
|
||||
return obs
|
||||
|
||||
|
||||
class FrameStack(gym.Wrapper):
|
||||
def __init__(self, env, k):
|
||||
@ -136,90 +144,8 @@ class NormalizeActions:
|
||||
original = np.where(self._mask, original, action)
|
||||
return self._env.step(original)
|
||||
|
||||
class TimeLimit:
|
||||
|
||||
def __init__(self, env, duration):
|
||||
self._env = env
|
||||
self._duration = duration
|
||||
self._step = None
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
def step(self, action):
|
||||
assert self._step is not None, 'Must reset environment.'
|
||||
obs, reward, done, info = self._env.step(action)
|
||||
self._step += 1
|
||||
if self._step >= self._duration:
|
||||
done = True
|
||||
if 'discount' not in info:
|
||||
info['discount'] = np.array(1.0).astype(np.float32)
|
||||
self._step = None
|
||||
return obs, reward, done, info
|
||||
|
||||
def reset(self):
|
||||
self._step = 0
|
||||
return self._env.reset()
|
||||
|
||||
|
||||
class ReplayBuffer:
|
||||
|
||||
def __init__(self, size, obs_shape, action_size, seq_len, batch_size, args):
|
||||
|
||||
self.size = size
|
||||
self.obs_shape = obs_shape
|
||||
self.action_size = action_size
|
||||
self.seq_len = seq_len
|
||||
self.batch_size = batch_size
|
||||
self.idx = 0
|
||||
self.full = False
|
||||
self.observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||||
self.next_observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||||
self.actions = np.empty((size, action_size), dtype=np.float32)
|
||||
self.rewards = np.empty((size,), dtype=np.float32)
|
||||
self.terminals = np.empty((size,), dtype=np.float32)
|
||||
self.steps, self.episodes = 0, 0
|
||||
self.episode_count = np.zeros((size,), dtype=np.int32)
|
||||
|
||||
def add(self, obs, ac, next_obs, rew, done, episode_count):
|
||||
self.observations[self.idx] = obs
|
||||
self.next_observations[self.idx] = next_obs
|
||||
self.actions[self.idx] = ac
|
||||
self.rewards[self.idx] = rew
|
||||
self.terminals[self.idx] = done
|
||||
self.full = self.full or self.idx == 0
|
||||
self.steps += 1
|
||||
self.episodes = self.episodes + (1 if done else 0)
|
||||
self.episode_count[self.idx] = episode_count
|
||||
self.idx = (self.idx + 1) % self.size
|
||||
|
||||
def _sample_idx(self, L):
|
||||
valid_idx = False
|
||||
while not valid_idx:
|
||||
idx = np.random.randint(0, self.size if self.full else self.idx - L)
|
||||
idxs = np.arange(idx, idx + L) % self.size
|
||||
valid_idx = not self.idx in idxs[1:]
|
||||
return idxs
|
||||
|
||||
def _retrieve_batch(self, idxs, n, L):
|
||||
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
|
||||
observations = self.observations[vec_idxs]
|
||||
next_obs = self.next_observations[vec_idxs]
|
||||
obs = observations.reshape(L, n, *observations.shape[1:])
|
||||
next_obs = next_obs.reshape(L, n, *next_obs.shape[1:])
|
||||
acs = self.actions[vec_idxs].reshape(L, n, -1)
|
||||
rew = self.rewards[vec_idxs].reshape(L, n)
|
||||
term = self.terminals[vec_idxs].reshape(L, n)
|
||||
return obs, acs, next_obs, rew, term
|
||||
|
||||
def sample(self):
|
||||
n = self.batch_size
|
||||
l = self.seq_len
|
||||
obs,acs,next_obs,rews,terms= self._retrieve_batch(np.asarray([self._sample_idx(l) for _ in range(n)]), n, l)
|
||||
return obs,acs,next_obs,rews,terms
|
||||
|
||||
|
||||
class ReplayBuffer1:
|
||||
def __init__(self, size, obs_shape, action_size, seq_len, batch_size, args):
|
||||
self.size = size
|
||||
self.obs_shape = obs_shape
|
||||
@ -273,11 +199,7 @@ class ReplayBuffer1:
|
||||
def group_steps(self, buffer, variable, obs=True):
|
||||
variable = getattr(buffer, variable)
|
||||
non_zero_indices = np.nonzero(buffer.episode_count)[0]
|
||||
print(buffer.episode_count)
|
||||
variable = variable[non_zero_indices]
|
||||
print(variable.shape)
|
||||
exit()
|
||||
|
||||
if obs:
|
||||
variable = variable.reshape(-1, self.args.episode_length,
|
||||
self.args.frame_stack*self.args.channels,
|
||||
@ -292,9 +214,8 @@ class ReplayBuffer1:
|
||||
self.args.image_size,self.args.image_size)
|
||||
return variable
|
||||
|
||||
def sample_random_idx(self, buffer_length, last=False):
|
||||
init = 0 if last else buffer_length - self.args.batch_size
|
||||
random_indices = random.sample(range(init, buffer_length), self.args.batch_size)
|
||||
def sample_random_idx(self, buffer_length):
|
||||
random_indices = random.sample(range(0, buffer_length), self.args.batch_size)
|
||||
return random_indices
|
||||
|
||||
def group_and_sample_random_batch(self, buffer, variable_name, device, random_indices, is_obs=True, offset=0):
|
||||
@ -326,23 +247,19 @@ def make_env(args):
|
||||
)
|
||||
return env
|
||||
|
||||
def shuffle_along_axis(a, axis):
|
||||
idx = np.random.rand(*a.shape).argsort(axis=axis)
|
||||
return np.take_along_axis(a,idx,axis=axis)
|
||||
|
||||
def preprocess_obs(obs):
|
||||
obs = (obs/255.0) - 0.5
|
||||
obs = obs/255.0 - 0.5
|
||||
return obs
|
||||
|
||||
def soft_update_params(net, target_net, tau):
|
||||
for param, target_param in zip(net.parameters(), target_net.parameters()):
|
||||
target_param.data.copy_(
|
||||
tau * param.detach().data + (1 - tau) * target_param.data
|
||||
tau * param.data + (1 - tau) * target_param.data
|
||||
)
|
||||
|
||||
def save_image(array, filename):
|
||||
array = array.transpose(1, 2, 0)
|
||||
array = ((array+0.5) * 255).astype(np.uint8)
|
||||
array = (array * 255).astype(np.uint8)
|
||||
image = Image.fromarray(array)
|
||||
image.save(filename)
|
||||
|
||||
@ -363,20 +280,6 @@ def video_from_array(arr, high_noise, filename):
|
||||
out.write(frame)
|
||||
out.release()
|
||||
|
||||
def save_video(images):
|
||||
"""
|
||||
Image shape is (T, C, H, W)
|
||||
Example:(50, 3, 84, 84)
|
||||
"""
|
||||
output_file = "output.avi"
|
||||
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
||||
fps = 2
|
||||
height, width, channels = 84,84,3
|
||||
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
|
||||
for image in images:
|
||||
image = np.uint8(image.transpose((1, 2, 0)))
|
||||
out.write(image)
|
||||
out.release()
|
||||
|
||||
class CorruptVideos:
|
||||
def __init__(self, dir_path):
|
||||
@ -449,52 +352,4 @@ class FreezeParameters:
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
for i, param in enumerate(get_parameters(self.modules)):
|
||||
param.requires_grad = self.param_states[i]
|
||||
|
||||
class Logger:
|
||||
|
||||
def __init__(self, log_dir, n_logged_samples=10, summary_writer=None):
|
||||
self._log_dir = log_dir
|
||||
print('########################')
|
||||
print('logging outputs to ', log_dir)
|
||||
print('########################')
|
||||
self._n_logged_samples = n_logged_samples
|
||||
self._summ_writer = SummaryWriter(log_dir, flush_secs=1, max_queue=1)
|
||||
|
||||
def log_scalar(self, scalar, name, step_):
|
||||
self._summ_writer.add_scalar('{}'.format(name), scalar, step_)
|
||||
|
||||
def log_scalars(self, scalar_dict, step):
|
||||
for key, value in scalar_dict.items():
|
||||
print('{} : {}'.format(key, value))
|
||||
self.log_scalar(value, key, step)
|
||||
self.dump_scalars_to_pickle(scalar_dict, step)
|
||||
|
||||
def log_videos(self, videos, step, max_videos_to_save=1, fps=20, video_title='video'):
|
||||
|
||||
# max rollout length
|
||||
max_videos_to_save = np.min([max_videos_to_save, videos.shape[0]])
|
||||
max_length = videos[0].shape[0]
|
||||
for i in range(max_videos_to_save):
|
||||
if videos[i].shape[0]>max_length:
|
||||
max_length = videos[i].shape[0]
|
||||
|
||||
# pad rollouts to all be same length
|
||||
for i in range(max_videos_to_save):
|
||||
if videos[i].shape[0]<max_length:
|
||||
padding = np.tile([videos[i][-1]], (max_length-videos[i].shape[0],1,1,1))
|
||||
videos[i] = np.concatenate([videos[i], padding], 0)
|
||||
|
||||
clip = mpy.ImageSequenceClip(list(videos[i]), fps=fps)
|
||||
new_video_title = video_title+'{}_{}'.format(step, i) + '.gif'
|
||||
filename = os.path.join(self._log_dir, new_video_title)
|
||||
video.write_gif(filename, fps =fps)
|
||||
|
||||
|
||||
def dump_scalars_to_pickle(self, metrics, step, log_title=None):
|
||||
log_path = os.path.join(self._log_dir, "scalar_data.pkl" if log_title is None else log_title)
|
||||
with open(log_path, 'ab') as f:
|
||||
pickle.dump({'step': step, **dict(metrics)}, f)
|
||||
|
||||
def flush(self):
|
||||
self._summ_writer.flush()
|
||||
param.requires_grad = self.param_states[i]
|
Loading…
Reference in New Issue
Block a user