Compare commits

..

No commits in common. "idea_1" and "main" have entirely different histories.
idea_1 ... main

4 changed files with 325 additions and 983 deletions

View File

@ -23,24 +23,23 @@ class ObservationEncoder(nn.Module):
self.convs = nn.Sequential(*layers)
self.fc = nn.Linear(256 * obs_shape[0], 2 * state_size) # 9 if 3 frames stacked
self.fc = nn.Linear(256 * 3 * 3, 2 * state_size)
def forward(self, x):
x_reshaped = x.reshape(-1, *x.shape[-3:])
x_embed = self.convs(x_reshaped)
x_embed = torch.reshape(x_embed, (*x.shape[:-3], -1))
x = self.fc(x_embed)
x = self.convs(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
# Mean and standard deviation
mean, std = torch.chunk(x, 2, dim=-1)
mean = nn.ELU()(mean)
std = F.softplus(std)
std = torch.clamp(std, min=0.0, max=1e1)
std = torch.clamp(std, min=0.0, max=1e5)
# Normal Distribution
dist = self.get_dist(mean, std)
# Sampling via reparameterization Trick
#x = dist.rsample()
x = self.reparameterize(mean, std)
encoded_output = {"sample": x, "distribution": dist}
@ -64,7 +63,7 @@ class ObservationDecoder(nn.Module):
self.output_shape = output_shape
self.input_size = 256 * 3 * 3
self.in_channels = [self.input_size, 256, 128, 64]
self.out_channels = [256, 128, 64, 9]
self.out_channels = [256, 128, 64, 3]
if output_shape[1] == 84:
self.kernels = [5, 7, 5, 6]
@ -95,50 +94,43 @@ class ObservationDecoder(nn.Module):
class Actor(nn.Module):
def __init__(self, state_size, hidden_size, action_size, num_layers=4, min_std=1e-4, init_std=5, mean_scale=5):
def __init__(self, state_size, hidden_size, action_size, num_layers=5):
super().__init__()
self.state_size = state_size
self.hidden_size = hidden_size
self.action_size = action_size
self.num_layers = num_layers
self._min_std = min_std
self._init_std = init_std
self._mean_scale = mean_scale
self._min_std=torch.Tensor([1e-4])[0]
self._init_std=torch.Tensor([5])[0]
self._mean_scale=torch.Tensor([5])[0]
layers = []
for i in range(self.num_layers):
input_channels = state_size if i == 0 else self.hidden_size
layers.append(nn.Linear(input_channels, self.hidden_size))
layers.append(nn.ReLU())
layers.append(nn.Linear(self.hidden_size, 2*self.action_size))
output_channels = self.hidden_size if i!= self.num_layers-1 else 2*action_size
layers.append(nn.Linear(input_channels, output_channels))
layers.append(nn.LeakyReLU())
self.action_model = nn.Sequential(*layers)
def get_dist(self, mean, std):
distribution = torch.distributions.Normal(mean, std)
distribution = torch.distributions.transformed_distribution.TransformedDistribution(distribution, TanhBijector())
distribution = torch.distributions.independent.Independent(distribution, 1)
distribution = SampleDist(distribution)
return distribution
def add_exploration(self, action, action_noise=0.3):
return torch.clamp(torch.distributions.Normal(action, action_noise).rsample(), -1, 1)
def forward(self, features):
out = self.action_model(features)
mean, std = torch.chunk(out, 2, dim=-1)
raw_init_std = np.log(np.exp(self._init_std) - 1)
raw_init_std = torch.log(torch.exp(self._init_std) - 1)
action_mean = self._mean_scale * torch.tanh(mean / self._mean_scale)
action_std = F.softplus(std + raw_init_std) + self._min_std
dist = self.get_dist(action_mean, action_std)
sample = dist.rsample() #self.reparameterize(action_mean, action_std)
sample = dist.rsample()
return sample
def reparameterize(self, mu, std):
eps = torch.randn_like(std)
return mu + eps * std
class ValueModel(nn.Module):
def __init__(self, state_size, hidden_size, num_layers=4):
@ -148,12 +140,11 @@ class ValueModel(nn.Module):
self.num_layers = num_layers
layers = []
for i in range(self.num_layers-1):
for i in range(self.num_layers):
input_channels = state_size if i == 0 else self.hidden_size
output_channels = self.hidden_size
output_channels = self.hidden_size if i!= self.num_layers-1 else 1
layers.append(nn.Linear(input_channels, output_channels))
layers.append(nn.LeakyReLU())
layers.append(nn.Linear(self.hidden_size, int(np.prod(1))))
self.value_model = nn.Sequential(*layers)
def forward(self, state):
@ -178,7 +169,6 @@ class RewardModel(nn.Module):
return torch.distributions.independent.Independent(
torch.distributions.Normal(reward, 1), 1)
"""
class TransitionModel(nn.Module):
def __init__(self, state_size, hidden_size, action_size, history_size):
super().__init__()
@ -190,7 +180,6 @@ class TransitionModel(nn.Module):
self.act_fn = nn.LeakyReLU()
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
self.ln = nn.LayerNorm(hidden_size)
self.history_cell = nn.GRUCell(hidden_size + history_size, history_size)
self.fc_state_prior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
self.fc_state_posterior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
@ -205,25 +194,12 @@ class TransitionModel(nn.Module):
distribution = torch.distributions.independent.Independent(distribution, 1)
return distribution
def stack_states(self, states, dim=0):
s = dict(
mean = torch.stack([state['mean'] for state in states], dim=dim),
std = torch.stack([state['std'] for state in states], dim=dim),
sample = torch.stack([state['sample'] for state in states], dim=dim),
history = torch.stack([state['history'] for state in states], dim=dim),)
if 'distribution' in states:
dist = dict(distribution = [state['distribution'] for state in states])
s.update(dist)
return s
def imagine_step(self, prev_state, prev_action, prev_history):
state_action = self.act_fn(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1)))
prev_hist = prev_history.detach()
history = self.history_cell(torch.cat([state_action, prev_hist], dim=-1), prev_hist)
def seq_to_batch(self, state, name):
return dict(
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
def imagine_step(self, state, action, history):
state_action = self.ln(self.act_fn(self.fc_state_action(torch.cat([state, action], dim=-1))))
imag_hist = self.history_cell(torch.cat([state_action, history], dim=-1), history)
state_prior = self.fc_state_prior(torch.cat([imag_hist, state, action], dim=-1))
state_prior = self.fc_state_prior(torch.cat([history, prev_state, prev_action], dim=-1))
state_prior_mean, state_prior_std = torch.chunk(state_prior, 2, dim=-1)
state_prior_std = F.softplus(state_prior_std)
@ -232,103 +208,19 @@ class TransitionModel(nn.Module):
# Sampling via reparameterization Trick
sample_state_prior = self.reparemeterize(state_prior_mean, state_prior_std)
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": imag_hist, "distribution": state_prior_dist}
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": history, "distribution": state_prior_dist}
return prior
def imagine_rollout(self, state, action, history, horizon):
imagined_priors = []
for i in range(horizon):
prior = self.imagine_step(state, action, history)
state = prior["sample"]
history = prior["history"]
imagined_priors.append(prior)
imagined_priors = self.stack_states(imagined_priors, dim=0)
return imagined_priors
def observe_step(self, prev_state, prev_action, prev_history, nonterms):
state_action = self.ln(self.act_fn(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
current_history = self.history_cell(torch.cat([state_action, prev_history], dim=-1), prev_history)
state_prior = self.fc_state_prior(torch.cat([prev_history, prev_state, prev_action], dim=-1))
state_prior_mean, state_prior_std = torch.chunk(state_prior*nonterms, 2, dim=-1)
state_prior_std = F.softplus(state_prior_std) + 0.1
sample_state_prior = state_prior_mean + torch.randn_like(state_prior_mean) * state_prior_std
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": current_history}
return prior
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
observed_rollout = []
for i in range(rollout_states.shape[0]):
actions = rollout_actions[i] * nonterms[i]
prior = self.observe_step(rollout_states[i], actions, init_history, nonterms[i])
init_history = prior["history"]
observed_rollout.append(prior)
observed_rollout = self.stack_states(observed_rollout, dim=0)
return observed_rollout
def reparemeterize(self, mean, std):
eps = torch.randn_like(std)
return mean + eps * std
"""
class TransitionModel(nn.Module):
def __init__(self, state_size, hidden_size, action_size, history_size):
super().__init__()
self.state_size = state_size
self.hidden_size = hidden_size
self.action_size = action_size
self.history_size = history_size
self.act_fn = nn.ELU()
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
self.history_cell = nn.GRUCell(hidden_size, history_size)
self.fc_state_mu = nn.Linear(history_size + hidden_size, state_size)
self.fc_state_sigma = nn.Linear(history_size + hidden_size, state_size)
self.batch_norm = nn.BatchNorm1d(hidden_size)
self.batch_norm2 = nn.BatchNorm1d(state_size)
self.min_sigma = 1e-4
self.max_sigma = 1e0
def init_states(self, batch_size, device):
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
def get_dist(self, mean, std):
distribution = torch.distributions.Normal(mean, std)
distribution = torch.distributions.independent.Independent(distribution, 1)
return distribution
def stack_states(self, states, dim=0):
s = dict(
mean = torch.stack([state['mean'] for state in states], dim=dim),
std = torch.stack([state['std'] for state in states], dim=dim),
sample = torch.stack([state['sample'] for state in states], dim=dim),
history = torch.stack([state['history'] for state in states], dim=dim),)
if 'distribution' in states:
dist = dict(distribution = [state['distribution'] for state in states])
s.update(dist)
return s
def seq_to_batch(self, state, name):
return dict(
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
def imagine_step(self, state, action, history):
next_state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([state, action], dim=-1))))
imag_history = self.history_cell(next_state_action_enc, history)
next_state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([next_state_action_enc, imag_history], dim=-1))))
next_state_sigma = torch.sigmoid(self.fc_state_sigma(torch.cat([next_state_action_enc, imag_history], dim=-1)))
next_state_sigma = self.min_sigma + (self.max_sigma - self.min_sigma) * next_state_sigma
# Normal Distribution
next_state_dist = self.get_dist(next_state_mu, next_state_sigma)
next_state_sample = self.reparemeterize(next_state_mu, next_state_sigma)
prior = {"mean": next_state_mu, "std": next_state_sigma, "sample": next_state_sample, "history": imag_history, "distribution": next_state_dist}
return prior
def imagine_rollout(self, state, action, history, horizon):
imagined_priors = []
for i in range(horizon):
@ -339,30 +231,8 @@ class TransitionModel(nn.Module):
imagined_priors = self.stack_states(imagined_priors, dim=0)
return imagined_priors
def observe_step(self, prev_state, prev_action, prev_history):
state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
current_history = self.history_cell(state_action_enc, prev_history)
state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([state_action_enc, prev_history], dim=-1))))
state_sigma = F.softplus(self.fc_state_sigma(torch.cat([state_action_enc, prev_history], dim=-1)))
sample_state = state_mu + torch.randn_like(state_mu) * state_sigma
state_enc = {"mean": state_mu, "std": state_sigma, "sample": sample_state, "history": current_history}
return state_enc
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
observed_rollout = []
for i in range(rollout_states.shape[0]):
rollout_states_ = rollout_states[i]
rollout_actions_ = rollout_actions[i]
init_history_ = nonterms[i] * init_history
state_enc = self.observe_step(rollout_states_, rollout_actions_, init_history_)
init_history = state_enc["history"]
observed_rollout.append(state_enc)
observed_rollout = self.stack_states(observed_rollout, dim=0)
return observed_rollout
def reparemeterize(self, mean, std):
eps = torch.randn_like(mean)
eps = torch.randn_like(std)
return mean + eps * std
@ -430,7 +300,6 @@ class ContrastiveHead(nn.Module):
return logits
"""
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
def __init__(self, last_states, current_states, negative_current_states, predicted_current_states):
super(CLUBSample, self).__init__()
@ -444,7 +313,7 @@ class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
sample = state_dict["sample"] #dist.sample() # Use state_dict["sample"] if you want to use the same sample for all the losses
mu = dist.mean
var = dist.variance
return mu.detach(), var.detach(), sample.detach()
return mu, var, sample
def loglikeli(self):
_, _, pred_sample = self.get_mu_var_samples(self.predicted_current_states)
@ -461,136 +330,15 @@ class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
random_index = torch.randperm(sample_size).long()
pos = (-(mu_curr - pred_sample)**2 /var_curr).sum(dim=1).mean(dim=0)
#neg = (-(mu_curr - pred_sample[random_index])**2 /var_curr).sum(dim=1).mean(dim=0)
neg = (-(mu_neg - pred_sample)**2 /var_neg).sum(dim=1).mean(dim=0)
neg = (-(mu_curr - pred_sample[random_index])**2 /var_curr).sum(dim=1).mean(dim=0)
#neg = (-(mu_neg - pred_sample)**2 /var_neg).sum(dim=1).mean(dim=0)
upper_bound = pos - neg
return upper_bound/2
def learning_loss(self):
return - self.loglikeli()
"""
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
def __init__(self, x_dim, y_dim, hidden_size):
super(CLUBSample, self).__init__()
self.p_mu = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim))
self.p_logvar = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim),
nn.Tanh())
def get_mu_logvar(self, x_samples):
mu = self.p_mu(x_samples)
logvar = self.p_logvar(x_samples)
return mu, logvar
def loglikeli(self, x_samples, y_samples):
mu, logvar = self.get_mu_logvar(x_samples)
return (-(mu - y_samples)**2 /logvar.exp()-logvar).sum(dim=1).mean(dim=0)
def forward(self, x_samples, y_samples, y_negatives):
mu, logvar = self.get_mu_logvar(x_samples)
sample_size = x_samples.shape[0]
#random_index = torch.randint(sample_size, (sample_size,)).long()
random_index = torch.randperm(sample_size).long()
positive = -(mu - y_samples)**2 / logvar.exp()
#negative = - (mu - y_samples[random_index])**2 / logvar.exp()
negative = -(mu - y_negatives)**2 / logvar.exp()
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
return upper_bound/2.
def learning_loss(self, x_samples, y_samples):
return -self.loglikeli(x_samples, y_samples)
class QFunction(nn.Module):
"""MLP for q-function."""
def __init__(self, obs_dim, action_dim, hidden_dim):
super().__init__()
self.trunk = nn.Sequential(
nn.Linear(obs_dim + action_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
def forward(self, obs, action):
assert obs.size(0) == action.size(0)
obs_action = torch.cat([obs, action], dim=1)
return self.trunk(obs_action)
class Critic(nn.Module):
"""Critic network, employes two q-functions."""
def __init__(
self, obs_shape, action_shape, hidden_dim, encoder_feature_dim):
super().__init__()
self.Q1 = QFunction(
self.encoder.feature_dim, action_shape[0], hidden_dim
)
self.Q2 = QFunction(
self.encoder.feature_dim, action_shape[0], hidden_dim
)
self.outputs = dict()
def forward(self, obs, action, detach_encoder=False):
# detach_encoder allows to stop gradient propogation to encoder
obs = self.encoder(obs, detach=detach_encoder)
q1 = self.Q1(obs, action)
q2 = self.Q2(obs, action)
self.outputs['q1'] = q1
self.outputs['q2'] = q2
return q1, q2
class SampleDist:
def __init__(self, dist, samples=100):
self._dist = dist
self._samples = samples
@property
def name(self):
return 'SampleDist'
def __getattr__(self, name):
return getattr(self._dist, name)
def mean(self):
sample = self._dist.rsample(self._samples)
return torch.mean(sample, 0)
def mode(self):
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
sample = dist.rsample()
logprob = dist.log_prob(sample)
batch_size = sample.size(1)
feature_size = sample.size(2)
indices = torch.argmax(logprob, dim=0).reshape(1, batch_size, 1).expand(1, batch_size, feature_size)
return torch.gather(sample, 0, indices).squeeze(0)
def entropy(self):
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
sample = dist.rsample()
logprob = dist.log_prob(sample)
return -torch.mean(logprob, 0)
def sample(self):
return self._dist.sample()
if "__name__ == __main__":
tr = TransitionModel(50, 512, 1, 256)
pass

View File

@ -1,51 +0,0 @@
import torch
import numpy as np
class ReplayBuffer:
def __init__(self, size, obs_shape, action_size, seq_len, batch_size):
self.size = size
self.obs_shape = obs_shape
self.action_size = action_size
self.seq_len = seq_len
self.batch_size = batch_size
self.idx = 0
self.full = False
self.observations = np.empty((size, *obs_shape), dtype=np.uint8)
self.next_observations = np.empty((size, *obs_shape), dtype=np.uint8)
self.actions = np.empty((size, action_size), dtype=np.float32)
self.rewards = np.empty((size,), dtype=np.float32)
self.terminals = np.empty((size,), dtype=np.float32)
self.steps, self.episodes = 0, 0
def add(self, obs, ac, next_obs, rew, done):
self.observations[self.idx] = obs
self.next_observations[self.idx] = next_obs
self.actions[self.idx] = ac
self.rewards[self.idx] = rew
self.terminals[self.idx] = done
self.idx = (self.idx + 1) % self.size
self.full = self.full or self.idx == 0
self.steps += 1
self.episodes = self.episodes + (1 if done else 0)
def _sample_idx(self, L):
valid_idx = False
while not valid_idx:
idx = np.random.randint(0, self.size if self.full else self.idx - L)
idxs = np.arange(idx, idx + L) % self.size
valid_idx = not self.idx in idxs[1:]
return idxs
def _retrieve_batch(self, idxs, n, L):
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
observations = self.observations[vec_idxs]
next_observations = self.next_observations[vec_idxs]
return observations.reshape(L, n, *observations.shape[1:]),self.actions[vec_idxs].reshape(L, n, -1), next_observations.reshape(L, n, *next_observations.shape[1:]), self.rewards[vec_idxs].reshape(L, n), self.terminals[vec_idxs].reshape(L, n)
def sample(self):
n = self.batch_size
l = self.seq_len
obs,acs,nxt_obs,rews,terms= self._retrieve_batch(np.asarray([self._sample_idx(l) for _ in range(n)]), n, l)
return obs,acs,nxt_obs,rews,terms

View File

@ -6,12 +6,11 @@ import wandb
import random
import argparse
import numpy as np
from collections import OrderedDict
import utils
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image, shuffle_along_axis, Logger
from replay_buffer import ReplayBuffer
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
from logger import Logger
from video import VideoRecorder
from dmc2gym.wrappers import set_global_var
@ -41,22 +40,19 @@ def parse_args():
parser.add_argument('--resource_files', type=str)
parser.add_argument('--eval_resource_files', type=str)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
parser.add_argument('--total_frames', default=5000, type=int) # 10000
parser.add_argument('--total_frames', default=1000, type=int) # 10000
parser.add_argument('--high_noise', action='store_true')
# replay buffer
parser.add_argument('--replay_buffer_capacity', default=50000, type=int) #50000
parser.add_argument('--episode_length', default=51, type=int)
# train
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
parser.add_argument('--init_steps', default=5000, type=int)
parser.add_argument('--num_train_steps', default=100000, type=int)
parser.add_argument('--update_steps', default=10, type=int)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--state_size', default=100, type=int)
parser.add_argument('--hidden_size', default=512, type=int)
parser.add_argument('--history_size', default=256, type=int)
parser.add_argument('--episode_collection', default=5, type=int)
parser.add_argument('--episodes_buffer', default=5, type=int, help='Initial number of episodes to store in the buffer')
parser.add_argument('--init_steps', default=10000, type=int)
parser.add_argument('--num_train_steps', default=10000, type=int)
parser.add_argument('--batch_size', default=30, type=int) #512
parser.add_argument('--state_size', default=256, type=int)
parser.add_argument('--hidden_size', default=128, type=int)
parser.add_argument('--history_size', default=128, type=int)
parser.add_argument('--num-units', type=int, default=50, help='num hidden units for reward/value/discount models')
parser.add_argument('--load_encoder', default=None, type=str)
parser.add_argument('--imagine_horizon', default=15, type=str)
@ -64,33 +60,42 @@ def parse_args():
# eval
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
parser.add_argument('--num_eval_episodes', default=20, type=int)
parser.add_argument('--evaluation_interval', default=10000, type=int) # TODO: master had 10000
# value
parser.add_argument('--value_lr', default=8e-6, type=float)
parser.add_argument('--value_lr', default=8e-5, type=float)
parser.add_argument('--value_beta', default=0.9, type=float)
parser.add_argument('--value_tau', default=0.005, type=float)
parser.add_argument('--value_target_update_freq', default=100, type=int)
parser.add_argument('--td_lambda', default=0.95, type=int)
# actor
parser.add_argument('--actor_lr', default=8e-6, type=float)
parser.add_argument('--actor_lr', default=8e-5, type=float)
parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float)
parser.add_argument('--actor_update_freq', default=2, type=int)
# world/encoder/decoder
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
parser.add_argument('--world_model_lr', default=1e-6, type=float)
parser.add_argument('--decoder_lr', default=6e-6, type=float)
parser.add_argument('--reward_lr', default=8e-6, type=float)
parser.add_argument('--encoder_tau', default=0.005, type=float)
parser.add_argument('--encoder_feature_dim', default=50, type=int)
parser.add_argument('--world_model_lr', default=6e-4, type=float)
parser.add_argument('--past_transition_lr', default=1e-3, type=float)
parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.001, type=float)
parser.add_argument('--encoder_stride', default=1, type=int)
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
parser.add_argument('--decoder_lr', default=1e-3, type=float)
parser.add_argument('--decoder_update_freq', default=1, type=int)
parser.add_argument('--decoder_weight_lambda', default=0.0, type=float)
parser.add_argument('--num_layers', default=4, type=int)
parser.add_argument('--num_filters', default=32, type=int)
parser.add_argument('--aug', action='store_true')
# sac
parser.add_argument('--discount', default=0.99, type=float)
parser.add_argument('--init_temperature', default=0.01, type=float)
parser.add_argument('--alpha_lr', default=1e-3, type=float)
parser.add_argument('--alpha_beta', default=0.9, type=float)
# misc
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--logging_freq', default=100, type=int)
parser.add_argument('--saving_interval', default=2500, type=int)
parser.add_argument('--saving_interval', default=1000, type=int)
parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_model', default=False, action='store_true')
@ -121,7 +126,6 @@ class DPI:
self.env = make_env(self.args)
#self.args.seed = np.random.randint(0, 1000)
self.env.seed(self.args.seed)
self.global_episodes = 0
# noiseless environment setup
self.args.version = 2 # env_id changes to v2
@ -133,14 +137,14 @@ class DPI:
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
self.env = utils.ActionRepeat(self.env, self.args.action_repeat)
self.env = utils.NormalizeActions(self.env)
self.env = utils.TimeLimit(self.env, 1000 // args.action_repeat)
# create replay buffer
self.data_buffer = ReplayBuffer(self.args.replay_buffer_capacity,
self.env.observation_space.shape,
self.env.action_space.shape[0],
self.args.episode_length,
self.args.batch_size)
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size),
action_size=self.env.action_space.shape[0],
seq_len=self.args.episode_length,
batch_size=args.batch_size,
args=self.args)
# create work directory
utils.make_dir(self.args.work_dir)
@ -157,19 +161,16 @@ class DPI:
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
state_size=self.args.state_size # 128
).to(device)
self.obs_encoder.apply(self.init_weights)
self.obs_encoder_momentum = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
state_size=self.args.state_size # 128
).to(device)
self.obs_encoder_momentum.apply(self.init_weights)
self.obs_decoder = ObservationDecoder(
state_size=self.args.state_size, # 128
output_shape=(self.args.channels*self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84)
output_shape=(self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84)
).to(device)
self.obs_decoder.apply(self.init_weights)
self.transition_model = TransitionModel(
state_size=self.args.state_size, # 128
@ -177,7 +178,6 @@ class DPI:
action_size=self.env.action_space.shape[0], # 6
history_size=self.args.history_size, # 128
).to(device)
self.transition_model.apply(self.init_weights)
# Actor Model
self.actor_model = Actor(
@ -185,27 +185,22 @@ class DPI:
hidden_size=self.args.hidden_size, # 256,
action_size=self.env.action_space.shape[0], # 6
).to(device)
self.actor_model.apply(self.init_weights)
# Value Models
self.value_model = ValueModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
).to(device)
self.value_model.apply(self.init_weights)
self.target_value_model = ValueModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
).to(device)
self.target_value_model.apply(self.init_weights)
self.reward_model = RewardModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
).to(device)
self.reward_model.apply(self.init_weights)
# Contrastive Models
self.prjoection_head = ProjectionHead(
@ -224,32 +219,23 @@ class DPI:
hidden_size=self.args.hidden_size, # 256
).to(device)
self.club_sample = CLUBSample(
x_dim=self.args.state_size, # 128
y_dim=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
).to(device)
# model parameters
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.prjoection_head.parameters()) + \
list(self.transition_model.parameters()) + list(self.club_sample.parameters()) + \
list(self.contrastive_head.parameters())
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_decoder.parameters()) + \
list(self.value_model.parameters()) + list(self.transition_model.parameters()) + \
list(self.prjoection_head.parameters())
self.past_transition_parameters = self.transition_model.parameters()
# optimizers
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr,eps=1e-6)
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr,eps=1e-6)
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr,eps=1e-6)
self.decoder_opt = torch.optim.Adam(self.obs_decoder.parameters(), self.args.decoder_lr,eps=1e-6)
self.reward_opt = torch.optim.Adam(self.reward_model.parameters(), self.args.reward_lr,eps=1e-6)
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr)
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr)
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr)
self.past_transition_opt = torch.optim.Adam(self.past_transition_parameters, self.args.past_transition_lr)
# Create Modules
self.world_model_modules = [self.obs_encoder, self.prjoection_head, self.transition_model, self.club_sample, self.contrastive_head,
self.obs_encoder_momentum, self.prjoection_head_momentum]
self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.reward_model, self.transition_model, self.prjoection_head]
self.value_modules = [self.value_model]
self.actor_modules = [self.actor_model]
self.decoder_modules = [self.obs_decoder]
self.reward_modules = [self.reward_model]
if use_saved:
self._use_saved_models(saved_model_dir)
@ -259,432 +245,280 @@ class DPI:
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
def collect_random_sequences(self, seed_steps):
def collect_sequences(self, episodes, random=True, actor_model=None, encoder_model=None):
obs = self.env.reset()
done = False
all_rews = []
self.global_episodes += 1
#video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files)
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
if args.save_video:
self.env.video.init(enabled=True)
epi_reward = 0
for _ in tqdm.tqdm(range(seed_steps), desc='Collecting episodes'):
for i in range(self.args.episode_length):
if random:
action = self.env.action_space.sample()
next_obs, rew, done, _ = self.env.step(action)
self.data_buffer.add(obs, action, next_obs, rew, done)
obs = next_obs
epi_reward += rew
if done:
obs = self.env.reset()
done=False
all_rews.append(epi_reward)
epi_reward = 0
return all_rews
def collect_sequences(self, collect_steps, actor_model):
obs = self.env.reset()
done = False
all_rews = []
self.global_episodes += 1
epi_reward = 0
for episode_count in tqdm.tqdm(range(collect_steps), desc='Collecting episodes'):
else:
with torch.no_grad():
obs_ = torch.tensor(obs.copy(), dtype=torch.float32)
obs_ = preprocess_obs(obs_).to(device)
#state = self.get_features(obs_)["sample"].unsqueeze(0)
state = self.get_features(obs_)["distribution"].rsample()
action = actor_model(state)
action = actor_model.add_exploration(action)
action = action.cpu().numpy()[0]
next_obs, rew, done, _ = self.env.step(action)
self.data_buffer.add(obs, action, next_obs, rew, done)
obs_torch = torch.unsqueeze(torch.tensor(obs).float(),0).to(device)
state = self.obs_encoder(obs_torch)["distribution"].sample()
action = self.actor_model(state).cpu().detach().numpy().squeeze()
if done:
next_obs, rew, done, _ = self.env.step(action)
self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done)
if args.save_video:
self.env.video.record(self.env)
if done or i == self.args.episode_length-1:
obs = self.env.reset()
done=False
all_rews.append(epi_reward)
epi_reward = 0
else:
obs = next_obs
epi_reward += rew
all_rews.append(epi_reward)
if args.save_video:
self.env.video.save('noisy/%d.mp4' % episode_count)
print("Collected {} random episodes".format(episode_count+1))
return all_rews
def train(self, step, total_steps):
# logger
logdir = os.path.dirname(os.path.realpath(__file__)) + "/log/logs/"
if not(os.path.exists(logdir)):
os.makedirs(logdir)
initial_logs = OrderedDict()
logger = Logger(logdir)
counter = 0
while step < total_steps:
episodic_rews = self.collect_random_sequences(self.args.init_steps//args.action_repeat)
self.global_step = self.data_buffer.steps
initial_logs.update({
'train_avg_reward':np.mean(episodic_rews),
'train_max_reward': np.max(episodic_rews),
'train_min_reward': np.min(episodic_rews),
'train_std_reward':np.std(episodic_rews),
})
logger.log_scalars(initial_logs, step=0)
logger.flush()
while self.global_step < total_steps:
logs = OrderedDict()
step += 1
for update_steps in range(self.args.update_steps):
model_loss, actor_loss, value_loss, actor_model = self.update((step-1)*args.update_steps + update_steps)
initial_logs.update({
'model_loss' : model_loss,
'actor_loss': actor_loss,
'value_loss': value_loss,
'train_avg_reward':np.mean(episodic_rews),
'train_max_reward': np.max(episodic_rews),
'train_min_reward': np.min(episodic_rews),
'train_std_reward':np.std(episodic_rews),
})
logger.log_scalars(logs, self.global_step)
print("########## Global Step:", self.global_step, " ##########")
for key, value in initial_logs.items():
print(key, " : ", value)
episodic_rews = self.collect_sequences(1000//self.args.action_repeat, actor_model)
if self.global_step % 3150 == 0 and self.data_buffer.steps!=0: #self.args.evaluation_interval == 0:
print("Saving model")
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.save_models(path)
self.evaluate()
self.global_step = self.data_buffer.steps * self.args.action_repeat
"""
# collect experience
if step !=0:
encoder = self.obs_encoder
actor = self.actor_model
all_rews = self.collect_sequences(self.args.episode_collection, actor_model=actor, encoder_model=encoder)
"""
#all_rews = self.collect_sequences(self.args.batch_size, random=True)
all_rews = self.collect_sequences(self.args.batch_size, random=False, actor_model=actor, encoder_model=encoder)
else:
all_rews = self.collect_sequences(self.args.batch_size, random=True)
def collect_batch(self):
obs_, acs_, nxt_obs_, rews_, terms_ = self.data_buffer.sample()
# Group by steps and sample random batch
random_indices = self.data_buffer.sample_random_idx(self.args.batch_size * ((step//self.args.collection_interval)+1)) # random indices for batch
#random_indices = np.arange(self.args.batch_size * ((step//self.args.collection_interval)),self.args.batch_size * ((step//self.args.collection_interval)+1))
last_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"observations", "cpu", random_indices=random_indices)
current_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", random_indices=random_indices)
next_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", offset=1, random_indices=random_indices)
actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, random_indices=random_indices)
next_actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, offset=1, random_indices=random_indices)
rewards = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"rewards", device=device, is_obs=False, offset=1, random_indices=random_indices)
obs = torch.tensor(obs_, dtype=torch.float32)[1:]
last_obs = torch.tensor(obs_, dtype=torch.float32)[:-1]
nxt_obs = torch.tensor(nxt_obs_, dtype=torch.float32)[1:]
acs = torch.tensor(acs_, dtype=torch.float32)[:-1].to(device)
nxt_acs = torch.tensor(acs_, dtype=torch.float32)[1:].to(device)
rews = torch.tensor(rews_, dtype=torch.float32)[:-1].to(device).unsqueeze(-1)
nonterms = torch.tensor((1.0-terms_), dtype=torch.float32)[:-1].to(device).unsqueeze(-1)
# Preprocessing
last_observations = preprocess_obs(last_observations).to(device)
current_observations = preprocess_obs(current_observations).to(device)
next_observations = preprocess_obs(next_observations).to(device)
last_obs = preprocess_obs(last_obs).to(device)
obs = preprocess_obs(obs).to(device)
nxt_obs = preprocess_obs(nxt_obs).to(device)
# Initialize transition model states
self.transition_model.init_states(self.args.batch_size, device) # (N,128)
self.history = self.transition_model.prev_history # (N,128)
return last_obs, obs, nxt_obs, acs, rews, nxt_acs, nonterms
# Train encoder
if step == 0:
step += 1
for _ in range(self.args.collection_interval // self.args.episode_length+1):
counter += 1
for i in range(self.args.episode_length-1):
if i > 0:
# Encode observations and next_observations
self.last_states_dict = self.get_features(last_observations[i])
self.current_states_dict = self.get_features(current_observations[i])
self.next_states_dict = self.get_features(next_observations[i], momentum=True)
self.action = actions[i] # (N,6)
self.next_action = next_actions[i] # (N,6)
history = self.transition_model.prev_history
def update(self, step):
last_observations, current_observations, next_observations, actions, rewards, next_actions, nonterms = self.collect_batch()
# Encode negative observations
idx = torch.randperm(current_observations[i].shape[0]) # random permutation on batch
random_time_index = torch.randint(0, self.args.episode_length-2, (1,)).item() # random time index
negative_current_observations = current_observations[random_time_index][idx]
self.negative_current_states_dict = self.obs_encoder(negative_current_observations)
#last_observations, current_observations, next_observations, actions, next_actions, rewards = self.select_one_batch()
# Predict current state from past state with transition model
last_states_sample = self.last_states_dict["sample"]
predicted_current_state_dict = self.transition_model.imagine_step(last_states_sample, self.action, self.history)
self.history = predicted_current_state_dict["history"]
# Calculate upper bound loss
likeli_loss, ub_loss = self._upper_bound_minimization(self.last_states_dict,
self.current_states_dict,
self.negative_current_states_dict,
predicted_current_state_dict
)
world_loss, enc_loss, rew_loss, dec_loss, ub_loss, lb_loss = self.world_model_losses(last_observations,
current_observations,
next_observations,
actions,
next_actions,
rewards,
nonterms)
# Calculate encoder loss
encoder_loss = self._past_encoder_loss(self.current_states_dict,
predicted_current_state_dict)
# contrastive projection
vec_anchor = predicted_current_state_dict["sample"]
vec_positive = self.next_states_dict["sample"].detach()
z_anchor = self.prjoection_head(vec_anchor, self.action)
z_positive = self.prjoection_head_momentum(vec_positive, next_actions[i]).detach()
# contrastive loss
logits = self.contrastive_head(z_anchor, z_positive)
labels = torch.arange(logits.shape[0]).long().to(device)
lb_loss = F.cross_entropy(logits, labels)
# behaviour learning
with FreezeParameters(self.world_model_modules):
imagine_horizon = self.args.imagine_horizon #np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(),
self.next_action, self.history.detach(),
imagine_horizon)
# decoder loss
horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
obs_dist = self.obs_decoder(imagined_rollout["sample"][:horizon])
decoder_loss = -torch.mean(obs_dist.log_prob(next_observations[i:i+horizon][:,:,:3,:,:]))
# reward loss
reward_dist = self.reward_model(self.current_states_dict["sample"])
reward_loss = -torch.mean(reward_dist.log_prob(rewards[:-1]))
# update models
world_model_loss = encoder_loss + 100 * ub_loss + lb_loss + reward_loss + decoder_loss * 1e-2
self.world_model_opt.zero_grad()
world_loss.backward()
world_model_loss.backward()
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
self.world_model_opt.step()
self.decoder_opt.zero_grad()
dec_loss.backward()
nn.utils.clip_grad_norm_(self.obs_decoder.parameters(), self.args.grad_clip_norm)
self.decoder_opt.step()
# update momentum encoder
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
self.reward_opt.zero_grad()
rew_loss.backward()
nn.utils.clip_grad_norm_(self.reward_model.parameters(), self.args.grad_clip_norm)
self.reward_opt.step()
# update momentum projection head
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
actor_loss = self.actor_model_losses()
# actor loss
with FreezeParameters(self.world_model_modules + self.value_modules):
imag_rew_dist = self.reward_model(imagined_rollout["sample"])
target_imag_val_dist = self.target_value_model(imagined_rollout["sample"])
imag_rews = imag_rew_dist.mean
target_imag_vals = target_imag_val_dist.mean
discounts = self.args.discount * torch.ones_like(imag_rews).detach()
self.target_returns = self._compute_lambda_return(imag_rews[:-1],
target_imag_vals[:-1],
discounts[:-1] ,
self.args.td_lambda,
target_imag_vals[-1])
discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0)
self.discounts = torch.cumprod(discounts, 0).detach()
actor_loss = -torch.mean(self.discounts * self.target_returns)
# update actor
self.actor_opt.zero_grad()
actor_loss.backward()
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
self.actor_opt.step()
value_loss = self.value_model_losses()
# value loss
with torch.no_grad():
value_feat = imagined_rollout["sample"][:-1].detach()
value_targ = self.target_returns.detach()
value_dist = self.value_model(value_feat)
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
# update value
self.value_opt.zero_grad()
value_loss.backward()
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm)
self.value_opt.step()
# update momentum encoder and projection head
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
# update target value
if step % self.args.value_target_update_freq == 0:
self.target_value_model = copy.deepcopy(self.value_model)
# counter for reward
count = np.arange((counter-1) * (self.args.batch_size), (counter) * (self.args.batch_size))
# update target value networks
#if step % self.args.value_target_update_freq == 0:
# self.target_value_model = copy.deepcopy(self.value_model)
if step % self.args.logging_freq:
writer.add_scalar('World Loss/World Loss', world_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Encoder Loss', enc_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Decoder Loss', dec_loss.detach().item(), step)
writer.add_scalar('World Loss/World Loss', world_model_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, step)
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Reward Loss', rew_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Lower Bound Loss', -lb_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss.detach().item(), step)
return world_loss.item(), actor_loss.item(), value_loss.item(), self.actor_model
step += 1
if step>total_steps:
print("Training finished")
break
def world_model_losses(self, last_obs, curr_obs, nxt_obs, actions, nxt_actions, rewards, nonterms):
# get features
self.last_state_feat = self.get_features(last_obs)
self.curr_state_feat = self.get_features(curr_obs)
self.nxt_state_feat = self.get_features(nxt_obs)
self.nxt_state_feat_lb = self.get_features(nxt_obs, momentum=True)
# save model
if step % self.args.saving_interval == 0:
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.save_models(path)
# states
self.last_state_enc = self.last_state_feat["distribution"].rsample() #self.last_state_feat["sample"]
self.curr_state_enc = self.curr_state_feat["distribution"].rsample() #self.curr_state_feat["sample"]
self.nxt_state_enc = self.nxt_state_feat["distribution"].rsample() #self.nxt_state_feat["sample"]
self.nxt_state_enc_lb = self.nxt_state_feat_lb["distribution"].rsample() #self.nxt_state_feat_lb["sample"]
#torch.cuda.empty_cache() # memory leak issues
# predict next states
self.transition_model.init_states(self.args.batch_size, device) # (N,128)
self.observed_rollout = self.transition_model.observe_rollout(self.last_state_enc, actions, self.transition_model.prev_history, nonterms)
self.pred_curr_state_dist = self.transition_model.get_dist(self.observed_rollout["mean"], self.observed_rollout["std"])
self.pred_curr_state_enc = self.pred_curr_state_dist.rsample() #self.observed_rollout["sample"]
for j in range(len(all_rews)):
writer.add_scalar('Rewards/Rewards', all_rews[j], count[j])
# encoder loss
enc_loss = self._encoder_loss(self.curr_state_feat["distribution"], self.pred_curr_state_dist)
# reward loss
rew_dist = self.reward_model(self.curr_state_enc.detach())
#print(torch.cat([rew_dist.mean[0], rewards[0]],dim=-1))
rew_loss = -torch.mean(rew_dist.log_prob(rewards))
def evaluate(self, env, eval_episodes, render=False):
# decoder loss
dec_dist = self.obs_decoder(self.nxt_state_enc.detach())
dec_loss = -torch.mean(dec_dist.log_prob(nxt_obs))
episode_rew = np.zeros((eval_episodes))
# upper bound loss
past_ub_loss = 0
for i in range(self.curr_state_enc.shape[0]):
_, ub_loss = self._upper_bound_minimization(self.curr_state_enc[i],
self.pred_curr_state_enc[i])
ub_loss = ub_loss + past_ub_loss
past_ub_loss = ub_loss
ub_loss = ub_loss / self.curr_state_enc.shape[0]
ub_loss = 1 * ub_loss
video_images = [[] for _ in range(eval_episodes)]
# lower bound loss
# contrastive projection
vec_anchor = self.pred_curr_state_enc.detach()
vec_positive = self.nxt_state_enc_lb.detach()
z_anchor = self.prjoection_head(vec_anchor, nxt_actions)
z_positive = self.prjoection_head_momentum(vec_positive, nxt_actions)
# contrastive loss
past_lb_loss = 0
for i in range(z_anchor.shape[0]):
logits = self.contrastive_head(z_anchor[i], z_positive[i])
labels = torch.arange(logits.shape[0]).long().to(device)
lb_loss = F.cross_entropy(logits, labels) + past_lb_loss
past_lb_loss = lb_loss.detach().item()
lb_loss = -0.01 * lb_loss/(z_anchor.shape[0])
world_loss = enc_loss + ub_loss + lb_loss
return world_loss, enc_loss , rew_loss, dec_loss, ub_loss, lb_loss
def actor_model_losses(self):
with torch.no_grad():
#curr_state_enc = self.curr_state_enc.reshape(self.args.episode_length-1,-1) #self.transition_model.seq_to_batch(self.curr_state_feat, "sample")["sample"]
#curr_state_hist = self.observed_rollout["history"].reshape(self.args.episode_length-1,-1) #self.transition_model.seq_to_batch(self.observed_rollout, "history")["sample"]
curr_state_enc = self.curr_state_enc.reshape(-1, self.args.state_size)
curr_state_hist = self.observed_rollout["history"].reshape(-1, self.args.history_size)
with FreezeParameters(self.world_model_modules + self.decoder_modules + self.reward_modules + self.value_modules):
imagine_horizon = self.args.imagine_horizon
action = self.actor_model(curr_state_enc.detach())
self.imagined_rollout = self.transition_model.imagine_rollout(curr_state_enc,
action, curr_state_hist.detach(),
imagine_horizon)
self.pred_nxt_state_dist = self.transition_model.get_dist(self.imagined_rollout["mean"], self.imagined_rollout["std"])
self.pred_nxt_state_enc = self.pred_nxt_state_dist.rsample() #self.transition_model.reparemeterize(self.imagined_rollout["mean"], self.imagined_rollout["std"])
with FreezeParameters(self.world_model_modules + self.value_modules + self.decoder_modules + self.reward_modules):
imag_rewards_dist = self.reward_model(self.pred_nxt_state_enc)
imag_values_dist = self.value_model(self.pred_nxt_state_enc)
imag_rewards = imag_rewards_dist.mean
imag_values = imag_values_dist.mean
#print(torch.cat([imag_rewards[0], imag_values[0]],dim=-1))
discounts = self.args.discount * torch.ones_like(imag_rewards).detach()
self.returns = self._compute_lambda_return(imag_rewards[:-1],
imag_values[:-1],
discounts[:-1] ,
self.args.td_lambda,
imag_values[-1])
discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0)
self.discounts = torch.cumprod(discounts, 0).detach()
actor_loss = -torch.mean(self.discounts * self.returns)
return actor_loss
def value_model_losses(self):
with torch.no_grad():
value_feat = self.pred_nxt_state_enc[:-1].detach()
value_targ = self.returns.detach()
value_dist = self.value_model(value_feat)
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
return value_loss
def select_one_batch(self):
# collect sequences
non_zero_indices = np.nonzero(self.data_buffer.episode_count)[0]
current_obs = self.data_buffer.observations[non_zero_indices]
next_obs = self.data_buffer.next_observations[non_zero_indices]
actions_raw = self.data_buffer.actions[non_zero_indices]
rewards = self.data_buffer.rewards[non_zero_indices]
self.terms = np.where(self.data_buffer.terminals[non_zero_indices]!=False)[0]
# group by episodes
current_obs = self.grouped_arrays(current_obs)
next_obs = self.grouped_arrays(next_obs)
actions_raw = self.grouped_arrays(actions_raw)
rewards_ = self.grouped_arrays(rewards)
# select random chunks of episodes
if current_obs.shape[0] < self.args.batch_size:
random_episode_number = np.random.randint(0, current_obs.shape[0], self.args.batch_size)
else:
random_episode_number = random.sample(range(current_obs.shape[0]), self.args.batch_size)
# select random starting points
if current_obs[0].shape[0]-self.args.episode_length < self.args.batch_size:
init_index = np.random.randint(0, current_obs[0].shape[0]-self.args.episode_length-2, self.args.batch_size)
else:
init_index = np.asarray(random.sample(range(current_obs[0].shape[0]-self.args.episode_length), self.args.batch_size))
# shuffle
random.shuffle(random_episode_number)
random.shuffle(init_index)
# select first k elements
last_observations = self.select_first_k(current_obs, init_index, random_episode_number)[:-1]
current_observations = self.select_first_k(current_obs, init_index, random_episode_number)[1:]
next_observations = self.select_first_k(next_obs, init_index, random_episode_number)[:-1]
actions = self.select_first_k(actions_raw, init_index, random_episode_number)[:-1].to(device)
next_actions = self.select_first_k(actions_raw, init_index, random_episode_number)[1:].to(device)
rewards = self.select_first_k(rewards_, init_index, random_episode_number)[:-1].to(device)
# preprocessing
last_observations = preprocess_obs(last_observations).to(device)
current_observations = preprocess_obs(current_observations).to(device)
next_observations = preprocess_obs(next_observations).to(device)
return last_observations, current_observations, next_observations, actions, next_actions, rewards
def evaluate(self, eval_episodes=10):
path = path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.restore_checkpoint(path)
obs = self.env.reset()
for i in range(eval_episodes):
obs = env.reset()
done = False
prev_state = self.rssm.init_state(1, self.device)
prev_action = torch.zeros(1, self.action_size).to(self.device)
#video = VideoRecorder(self.video_dir, resource_files=self.args.resource_files)
if self.args.save_video:
self.env.video.init(enabled=True)
episodic_rewards = []
for episode in range(eval_episodes):
rewards = 0
done = False
while not done:
with torch.no_grad():
obs = torch.tensor(obs.copy(), dtype=torch.float32).unsqueeze(0)
obs_processed = preprocess_obs(obs).to(device)
state = self.get_features(obs_processed)["distribution"].rsample()
action = self.actor_model(state).cpu().detach().numpy().squeeze()
next_obs, rew, done, _ = self.env.step(action)
rewards += rew
posterior, action = self.act_with_world_model(obs, prev_state, prev_action)
action = action[0].cpu().numpy()
next_obs, rew, done, _ = env.step(action)
prev_state = posterior
prev_action = torch.tensor(action, dtype=torch.float32).to(self.device).unsqueeze(0)
episode_rew[i] += rew
if render:
video_images[i].append(obs['image'].transpose(1,2,0).copy())
obs = next_obs
return episode_rew, np.array(video_images[:self.args.max_videos_to_save])
if self.args.save_video:
self.env.video.record(self.env)
self.env.video.save('/home/vedant/Curiosity/Curiosity/DPI/log/video/learned_model.mp4')
obs = self.env.reset()
episodic_rewards.append(rewards)
print("Episodic rewards: ", episodic_rewards)
print("Average episodic reward: ", np.mean(episodic_rewards))
def init_weights(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
def grouped_arrays(self,array):
indices = [0] + self.terms.tolist()
def subarrays():
for start, end in zip(indices[:-1], indices[1:]):
yield array[start:end]
try:
subarrays = np.stack(list(subarrays()), axis=0)
except ValueError:
subarrays = np.asarray(list(subarrays()))
return subarrays
def select_first_k(self, array, init_index, episode_number):
term_index = init_index + self.args.episode_length
array = array[episode_number]
array_list = []
for i in range(array.shape[0]):
array_list.append(array[i][init_index[i]:term_index[i]])
array = np.asarray(array_list)
if array.ndim == 5:
transposed_array = np.transpose(array, (1, 0, 2, 3, 4))
elif array.ndim == 4:
transposed_array = np.transpose(array, (1, 0, 2, 3))
elif array.ndim == 3:
transposed_array = np.transpose(array, (1, 0, 2))
elif array.ndim == 2:
transposed_array = np.transpose(array, (1, 0))
else:
transposed_array = np.expand_dims(array, axis=0)
#return torch.tensor(array).float()
return torch.tensor(transposed_array).float()
def _upper_bound_minimization(self, current_states, predicted_current_states):
current_negative_states = shuffle_along_axis(current_states.clone(), axis=0)
current_negative_states = shuffle_along_axis(current_negative_states, axis=1)
club_loss = self.club_sample(current_states, predicted_current_states, current_negative_states)
likelihood_loss = 0
def _upper_bound_minimization(self, last_states, current_states, negative_current_states, predicted_current_states):
club_sample = CLUBSample(last_states,
current_states,
negative_current_states,
predicted_current_states)
likelihood_loss = club_sample.learning_loss()
club_loss = club_sample()
return likelihood_loss, club_loss
def _encoder_loss(self, curr_states_dist, predicted_curr_states_dist):
def _past_encoder_loss(self, curr_states_dict, predicted_curr_states_dict):
# current state distribution
curr_states_dist = curr_states_dict["distribution"]
# predicted current state distribution
predicted_curr_states_dist = predicted_curr_states_dict["distribution"]
# KL divergence loss
loss = torch.mean(torch.distributions.kl.kl_divergence(curr_states_dist,predicted_curr_states_dist))
loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean()
return loss
def get_features(self, x, momentum=False):
if self.args.aug:
crop_transform = T.RandomCrop(size=80)
cropped_x = torch.stack([crop_transform(x[i]) for i in range(x.size(0))])
padding = (2, 2, 2, 2)
x = F.pad(cropped_x, padding)
x = T.RandomCrop((80, 80))(x) # (None,80,80,4)
x = T.functional.pad(x, (4, 4, 4, 4), "symmetric") # (None,88,88,4)
x = T.RandomCrop((84, 84))(x) # (None,84,84,4)
with torch.no_grad():
if momentum:
@ -694,19 +528,6 @@ class DPI:
return x
def _compute_lambda_return(self, rewards, values, discounts, td_lam, last_value):
next_values = torch.cat([values[1:], last_value[None]], 0)
target = rewards + discounts * next_values * (1 - td_lam)
timesteps = list(range(rewards.shape[0] - 1, -1, -1))
outputs = []
accumulated_reward = last_value
for t in timesteps:
inp = target[t]
discount_factor = discounts[t]
accumulated_reward = inp + discount_factor * td_lam * accumulated_reward
outputs.append(accumulated_reward)
returns = torch.flip(torch.stack(outputs), [0])
return returns
"""
next_values = torch.cat([values[1:], last_value.unsqueeze(0)],0)
targets = rewards + discounts * next_values * (1-td_lam)
rets =[]
@ -718,25 +539,6 @@ class DPI:
returns = torch.flip(torch.stack(rets), [0])
return returns
"""
def lambda_return(self,imged_reward, value_pred, bootstrap, discount=0.99, lambda_=0.95):
# Setting lambda=1 gives a discounted Monte Carlo return.
# Setting lambda=0 gives a fixed 1-step return.
next_values = torch.cat([value_pred[1:], bootstrap[None]], 0)
discount_tensor = discount * torch.ones_like(imged_reward) # pcont
inputs = imged_reward + discount_tensor * next_values * (1 - lambda_)
last = bootstrap
indices = reversed(range(len(inputs)))
outputs = []
for index in indices:
inp, disc = inputs[index], discount_tensor[index]
last = inp + disc * lambda_ * last
outputs.append(last)
outputs = list(reversed(outputs))
outputs = torch.stack(outputs, 0)
returns = outputs
return returns
def save_models(self, save_path):
torch.save(
@ -749,17 +551,6 @@ class DPI:
'value_optimizer': self.value_opt.state_dict(),
'world_model_optimizer': self.world_model_opt.state_dict(),}, save_path)
def restore_checkpoint(self, ckpt_path):
checkpoint = torch.load(ckpt_path)
self.transition_model.load_state_dict(checkpoint['rssm'])
self.actor_model.load_state_dict(checkpoint['actor'])
self.reward_model.load_state_dict(checkpoint['reward_model'])
self.obs_encoder.load_state_dict(checkpoint['obs_encoder'])
self.obs_decoder.load_state_dict(checkpoint['obs_decoder'])
self.world_model_opt.load_state_dict(checkpoint['world_model_optimizer'])
self.actor_opt.load_state_dict(checkpoint['actor_optimizer'])
self.value_opt.load_state_dict(checkpoint['value_optimizer'])
if __name__ == '__main__':
args = parse_args()
@ -769,7 +560,6 @@ if __name__ == '__main__':
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
step = 0
total_steps = 2000000
total_steps = 10000
dpi = DPI(args)
dpi.train(step,total_steps)
dpi.evaluate()

View File

@ -1,13 +1,10 @@
import os
import random
import pickle
import numpy as np
from collections import deque
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
import gym
import dmc2gym
@ -63,6 +60,17 @@ def make_dir(dir_path):
return dir_path
def preprocess_obs(obs, bits=5):
"""Preprocessing image, see https://arxiv.org/abs/1807.03039."""
bins = 2**bits
assert obs.dtype == torch.float32
if bits < 8:
obs = torch.floor(obs / 2**(8 - bits))
obs = obs / bins
obs = obs + torch.rand_like(obs) / bins
obs = obs - 0.5
return obs
class FrameStack(gym.Wrapper):
def __init__(self, env, k):
@ -136,90 +144,8 @@ class NormalizeActions:
original = np.where(self._mask, original, action)
return self._env.step(original)
class TimeLimit:
def __init__(self, env, duration):
self._env = env
self._duration = duration
self._step = None
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
assert self._step is not None, 'Must reset environment.'
obs, reward, done, info = self._env.step(action)
self._step += 1
if self._step >= self._duration:
done = True
if 'discount' not in info:
info['discount'] = np.array(1.0).astype(np.float32)
self._step = None
return obs, reward, done, info
def reset(self):
self._step = 0
return self._env.reset()
class ReplayBuffer:
def __init__(self, size, obs_shape, action_size, seq_len, batch_size, args):
self.size = size
self.obs_shape = obs_shape
self.action_size = action_size
self.seq_len = seq_len
self.batch_size = batch_size
self.idx = 0
self.full = False
self.observations = np.empty((size, *obs_shape), dtype=np.uint8)
self.next_observations = np.empty((size, *obs_shape), dtype=np.uint8)
self.actions = np.empty((size, action_size), dtype=np.float32)
self.rewards = np.empty((size,), dtype=np.float32)
self.terminals = np.empty((size,), dtype=np.float32)
self.steps, self.episodes = 0, 0
self.episode_count = np.zeros((size,), dtype=np.int32)
def add(self, obs, ac, next_obs, rew, done, episode_count):
self.observations[self.idx] = obs
self.next_observations[self.idx] = next_obs
self.actions[self.idx] = ac
self.rewards[self.idx] = rew
self.terminals[self.idx] = done
self.full = self.full or self.idx == 0
self.steps += 1
self.episodes = self.episodes + (1 if done else 0)
self.episode_count[self.idx] = episode_count
self.idx = (self.idx + 1) % self.size
def _sample_idx(self, L):
valid_idx = False
while not valid_idx:
idx = np.random.randint(0, self.size if self.full else self.idx - L)
idxs = np.arange(idx, idx + L) % self.size
valid_idx = not self.idx in idxs[1:]
return idxs
def _retrieve_batch(self, idxs, n, L):
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
observations = self.observations[vec_idxs]
next_obs = self.next_observations[vec_idxs]
obs = observations.reshape(L, n, *observations.shape[1:])
next_obs = next_obs.reshape(L, n, *next_obs.shape[1:])
acs = self.actions[vec_idxs].reshape(L, n, -1)
rew = self.rewards[vec_idxs].reshape(L, n)
term = self.terminals[vec_idxs].reshape(L, n)
return obs, acs, next_obs, rew, term
def sample(self):
n = self.batch_size
l = self.seq_len
obs,acs,next_obs,rews,terms= self._retrieve_batch(np.asarray([self._sample_idx(l) for _ in range(n)]), n, l)
return obs,acs,next_obs,rews,terms
class ReplayBuffer1:
def __init__(self, size, obs_shape, action_size, seq_len, batch_size, args):
self.size = size
self.obs_shape = obs_shape
@ -273,11 +199,7 @@ class ReplayBuffer1:
def group_steps(self, buffer, variable, obs=True):
variable = getattr(buffer, variable)
non_zero_indices = np.nonzero(buffer.episode_count)[0]
print(buffer.episode_count)
variable = variable[non_zero_indices]
print(variable.shape)
exit()
if obs:
variable = variable.reshape(-1, self.args.episode_length,
self.args.frame_stack*self.args.channels,
@ -292,9 +214,8 @@ class ReplayBuffer1:
self.args.image_size,self.args.image_size)
return variable
def sample_random_idx(self, buffer_length, last=False):
init = 0 if last else buffer_length - self.args.batch_size
random_indices = random.sample(range(init, buffer_length), self.args.batch_size)
def sample_random_idx(self, buffer_length):
random_indices = random.sample(range(0, buffer_length), self.args.batch_size)
return random_indices
def group_and_sample_random_batch(self, buffer, variable_name, device, random_indices, is_obs=True, offset=0):
@ -326,23 +247,19 @@ def make_env(args):
)
return env
def shuffle_along_axis(a, axis):
idx = np.random.rand(*a.shape).argsort(axis=axis)
return np.take_along_axis(a,idx,axis=axis)
def preprocess_obs(obs):
obs = (obs/255.0) - 0.5
obs = obs/255.0 - 0.5
return obs
def soft_update_params(net, target_net, tau):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(
tau * param.detach().data + (1 - tau) * target_param.data
tau * param.data + (1 - tau) * target_param.data
)
def save_image(array, filename):
array = array.transpose(1, 2, 0)
array = ((array+0.5) * 255).astype(np.uint8)
array = (array * 255).astype(np.uint8)
image = Image.fromarray(array)
image.save(filename)
@ -363,20 +280,6 @@ def video_from_array(arr, high_noise, filename):
out.write(frame)
out.release()
def save_video(images):
"""
Image shape is (T, C, H, W)
Example:(50, 3, 84, 84)
"""
output_file = "output.avi"
fourcc = cv2.VideoWriter_fourcc(*'XVID')
fps = 2
height, width, channels = 84,84,3
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
for image in images:
image = np.uint8(image.transpose((1, 2, 0)))
out.write(image)
out.release()
class CorruptVideos:
def __init__(self, dir_path):
@ -450,51 +353,3 @@ class FreezeParameters:
def __exit__(self, exc_type, exc_val, exc_tb):
for i, param in enumerate(get_parameters(self.modules)):
param.requires_grad = self.param_states[i]
class Logger:
def __init__(self, log_dir, n_logged_samples=10, summary_writer=None):
self._log_dir = log_dir
print('########################')
print('logging outputs to ', log_dir)
print('########################')
self._n_logged_samples = n_logged_samples
self._summ_writer = SummaryWriter(log_dir, flush_secs=1, max_queue=1)
def log_scalar(self, scalar, name, step_):
self._summ_writer.add_scalar('{}'.format(name), scalar, step_)
def log_scalars(self, scalar_dict, step):
for key, value in scalar_dict.items():
print('{} : {}'.format(key, value))
self.log_scalar(value, key, step)
self.dump_scalars_to_pickle(scalar_dict, step)
def log_videos(self, videos, step, max_videos_to_save=1, fps=20, video_title='video'):
# max rollout length
max_videos_to_save = np.min([max_videos_to_save, videos.shape[0]])
max_length = videos[0].shape[0]
for i in range(max_videos_to_save):
if videos[i].shape[0]>max_length:
max_length = videos[i].shape[0]
# pad rollouts to all be same length
for i in range(max_videos_to_save):
if videos[i].shape[0]<max_length:
padding = np.tile([videos[i][-1]], (max_length-videos[i].shape[0],1,1,1))
videos[i] = np.concatenate([videos[i], padding], 0)
clip = mpy.ImageSequenceClip(list(videos[i]), fps=fps)
new_video_title = video_title+'{}_{}'.format(step, i) + '.gif'
filename = os.path.join(self._log_dir, new_video_title)
video.write_gif(filename, fps =fps)
def dump_scalars_to_pickle(self, metrics, step, log_title=None):
log_path = os.path.join(self._log_dir, "scalar_data.pkl" if log_title is None else log_title)
with open(log_path, 'ab') as f:
pickle.dump({'step': step, **dict(metrics)}, f)
def flush(self):
self._summ_writer.flush()