Compare commits
2 Commits
c4283ced6f
...
8fd56ba94d
Author | SHA1 | Date | |
---|---|---|---|
8fd56ba94d | |||
47090449d1 |
@ -93,7 +93,7 @@ class ObservationDecoder(nn.Module):
|
|||||||
return out_dist
|
return out_dist
|
||||||
|
|
||||||
|
|
||||||
class ActionDecoder(nn.Module):
|
class Actor(nn.Module):
|
||||||
def __init__(self, state_size, hidden_size, action_size, num_layers=5):
|
def __init__(self, state_size, hidden_size, action_size, num_layers=5):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.state_size = state_size
|
self.state_size = state_size
|
||||||
@ -153,6 +153,22 @@ class ValueModel(nn.Module):
|
|||||||
return value_dist
|
return value_dist
|
||||||
|
|
||||||
|
|
||||||
|
class RewardModel(nn.Module):
|
||||||
|
def __init__(self, state_size, hidden_size):
|
||||||
|
super().__init__()
|
||||||
|
self.reward_model = nn.Sequential(
|
||||||
|
nn.Linear(state_size, hidden_size),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(hidden_size, hidden_size),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(hidden_size, 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, state):
|
||||||
|
reward = self.reward_model(state).squeeze(dim=1)
|
||||||
|
return reward
|
||||||
|
|
||||||
|
|
||||||
class TransitionModel(nn.Module):
|
class TransitionModel(nn.Module):
|
||||||
def __init__(self, state_size, hidden_size, action_size, history_size):
|
def __init__(self, state_size, hidden_size, action_size, history_size):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -195,7 +211,6 @@ class TransitionModel(nn.Module):
|
|||||||
return prior
|
return prior
|
||||||
|
|
||||||
def stack_states(self, states, dim=0):
|
def stack_states(self, states, dim=0):
|
||||||
|
|
||||||
s = dict(
|
s = dict(
|
||||||
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
||||||
std = torch.stack([state['std'] for state in states], dim=dim),
|
std = torch.stack([state['std'] for state in states], dim=dim),
|
||||||
|
25
DPI/train.py
25
DPI/train.py
@ -11,7 +11,7 @@ import tqdm
|
|||||||
import wandb
|
import wandb
|
||||||
import utils
|
import utils
|
||||||
from utils import ReplayBuffer, make_env, save_image
|
from utils import ReplayBuffer, make_env, save_image
|
||||||
from models import ObservationEncoder, ObservationDecoder, TransitionModel, CLUBSample
|
from models import ObservationEncoder, ObservationDecoder, TransitionModel, CLUBSample, Actor, ValueModel, RewardModel
|
||||||
from logger import Logger
|
from logger import Logger
|
||||||
from video import VideoRecorder
|
from video import VideoRecorder
|
||||||
from dmc2gym.wrappers import set_global_var
|
from dmc2gym.wrappers import set_global_var
|
||||||
@ -176,6 +176,27 @@ class DPI:
|
|||||||
history_size=self.args.history_size, # 128
|
history_size=self.args.history_size, # 128
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.action_model = Actor(
|
||||||
|
state_size=self.args.state_size, # 128
|
||||||
|
hidden_size=self.args.hidden_size, # 256,
|
||||||
|
action_size=self.env.action_space.shape[0], # 6
|
||||||
|
)
|
||||||
|
|
||||||
|
self.value_model = ValueModel(
|
||||||
|
state_size=self.args.state_size, # 128
|
||||||
|
hidden_size=self.args.hidden_size, # 256
|
||||||
|
)
|
||||||
|
|
||||||
|
self.target_value_model = ValueModel(
|
||||||
|
state_size=self.args.state_size, # 128
|
||||||
|
hidden_size=self.args.hidden_size, # 256
|
||||||
|
)
|
||||||
|
|
||||||
|
self.reward_model = RewardModel(
|
||||||
|
state_size=self.args.state_size, # 128
|
||||||
|
hidden_size=self.args.hidden_size, # 256
|
||||||
|
)
|
||||||
|
|
||||||
# model parameters
|
# model parameters
|
||||||
self.model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_encoder_momentum.parameters()) + \
|
self.model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_encoder_momentum.parameters()) + \
|
||||||
list(self.obs_decoder.parameters()) + list(self.transition_model.parameters())
|
list(self.obs_decoder.parameters()) + list(self.transition_model.parameters())
|
||||||
@ -282,7 +303,7 @@ class DPI:
|
|||||||
|
|
||||||
imagine_horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
|
imagine_horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
|
||||||
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"], self.action, self.history, imagine_horizon)
|
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"], self.action, self.history, imagine_horizon)
|
||||||
print(imagine_horizon)
|
|
||||||
#exit()
|
#exit()
|
||||||
|
|
||||||
#print(total_ub_loss, total_encoder_loss)
|
#print(total_ub_loss, total_encoder_loss)
|
||||||
|
Loading…
Reference in New Issue
Block a user