Compare commits

..

No commits in common. "c3f6e9f281ed5bd6a5afc77ab12f20bca4e023f8" and "0781d4fd05b8fc017eb7cee6b54c81d94b81735b" have entirely different histories.

3 changed files with 0 additions and 530 deletions

View File

@ -1,196 +0,0 @@
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim
import collections
env = gym.make('CartPole-v1')
class Actor(nn.Module):
def __init__(self, n_actions, space_dims, hidden_dims):
super(Actor, self).__init__()
self.feature_extractor = nn.Sequential(
nn.Linear(space_dims, hidden_dims),
nn.ReLU(True),
)
self.actor = nn.Sequential(
nn.Linear(hidden_dims, n_actions),
nn.Softmax(dim=-1),
)
def forward(self, x):
features = self.feature_extractor(x)
policy = self.actor(features)
return policy
class Critic(nn.Module):
def __init__(self, space_dims, hidden_dims):
super(Critic, self).__init__()
self.feature_extractor = nn.Sequential(
nn.Linear(space_dims, hidden_dims),
nn.ReLU(True),
)
self.critic = nn.Linear(hidden_dims, 1)
def forward(self, x):
features = self.feature_extractor(x)
est_reward = self.critic(features)
return est_reward
class InverseModel(nn.Module):
def __init__(self, n_actions, hidden_dims):
super(InverseModel, self).__init__()
self.fc = nn.Linear(hidden_dims*2, n_actions)
def forward(self, features):
features = features.view(1, -1) # (1, hidden_dims)
action = self.fc(features) # (1, n_actions)
return action
class ForwardModel(nn.Module):
def __init__(self, n_actions, hidden_dims):
super(ForwardModel, self).__init__()
self.fc = nn.Linear(hidden_dims+n_actions, hidden_dims)
self.eye = torch.eye(n_actions)
def forward(self, action, features):
x = torch.cat([self.eye[action], features], dim=-1) # (1, n_actions+hidden_dims)
features = self.fc(x) # (1, hidden_dims)
return features
class FeatureExtractor(nn.Module):
def __init__(self, space_dims, hidden_dims):
super(FeatureExtractor, self).__init__()
self.fc = nn.Linear(space_dims, hidden_dims)
def forward(self, x):
y = torch.tanh(self.fc(x))
return y
class PGLoss(nn.Module):
def __init__(self):
super(PGLoss, self).__init__()
def forward(self, action_prob, reward):
loss = -torch.mean(torch.log(action_prob+1e-6)*reward)
return loss
def select_action(policy):
return np.random.choice(len(policy), 1, p=policy)[0]
def to_tensor(x, dtype=None):
return torch.tensor(x, dtype=dtype).unsqueeze(0)
class ConfigArgs:
beta = 0.2
lamda = 0.1
eta = 100.0 # scale factor for intrinsic reward
discounted_factor = 0.99
lr_critic = 0.005
lr_actor = 0.001
lr_icm = 0.001
max_eps = 1000
sparse_mode = True
args = ConfigArgs()
# Actor Critic
actor = Actor(n_actions=env.action_space.n, space_dims=4, hidden_dims=32)
critic = Critic(space_dims=4, hidden_dims=32)
# ICM
feature_extractor = FeatureExtractor(env.observation_space.shape[0], 32)
forward_model = ForwardModel(env.action_space.n, 32)
inverse_model = InverseModel(env.action_space.n, 32)
# Actor Critic
a_optim = torch.optim.Adam(actor.parameters(), lr=args.lr_actor)
c_optim = torch.optim.Adam(critic.parameters(), lr=args.lr_critic)
# ICM
icm_params = list(feature_extractor.parameters()) + list(forward_model.parameters()) + list(inverse_model.parameters())
icm_optim = torch.optim.Adam(icm_params, lr=args.lr_icm)
pg_loss = PGLoss()
mse_loss = nn.MSELoss()
xe_loss = nn.CrossEntropyLoss()
global_step = 0
n_eps = 0
reward_lst = []
mva_lst = []
mva = 0.
avg_ireward_lst = []
while n_eps < args.max_eps:
n_eps += 1
next_obs = to_tensor(env.reset(), dtype=torch.float)
done = False
score = 0
ireward_lst = []
while not done:
env.render()
obs = next_obs
a_optim.zero_grad()
c_optim.zero_grad()
icm_optim.zero_grad()
# estimate action with policy network
policy = actor(obs)
action = select_action(policy.detach().numpy()[0])
# interaction with environment
next_obs, reward, done, info = env.step(action)
next_obs = to_tensor(next_obs, dtype=torch.float)
advantages = torch.zeros_like(policy)
extrinsic_reward = to_tensor([0.], dtype=torch.float) if args.sparse_mode else to_tensor([reward], dtype=torch.float)
t_action = to_tensor(action)
v = critic(obs)[0]
next_v = critic(next_obs)[0]
# ICM
obs_cat = torch.cat([obs, next_obs], dim=0)
features = feature_extractor(obs_cat) # (2, hidden_dims)
inverse_action_prob = inverse_model(features) # (n_actions)
est_next_features = forward_model(t_action, features[0:1])
# Loss - ICM
forward_loss = mse_loss(est_next_features, features[1])
inverse_loss = xe_loss(inverse_action_prob, t_action.view(-1))
icm_loss = (1-args.beta)*inverse_loss + args.beta*forward_loss
# Reward
intrinsic_reward = args.eta*forward_loss.detach()
if done:
total_reward = -100 + intrinsic_reward if score < 499 else intrinsic_reward
advantages[0, action] = total_reward - v
c_target = total_reward
else:
total_reward = extrinsic_reward + intrinsic_reward
advantages[0, action] = total_reward + args.discounted_factor*next_v - v
c_target = total_reward + args.discounted_factor*next_v
# Loss - Actor Critic
actor_loss = pg_loss(policy, advantages.detach())
critic_loss = mse_loss(v, c_target.detach())
ac_loss = actor_loss + critic_loss
# Update
loss = args.lamda*ac_loss + icm_loss
loss.backward()
icm_optim.step()
a_optim.step()
c_optim.step()
if not done:
score += reward
ireward_lst.append(intrinsic_reward.item())
global_step += 1
avg_intrinsic_reward = sum(ireward_lst) / len(ireward_lst)
mva = 0.95*mva + 0.05*score
reward_lst.append(score)
avg_ireward_lst.append(avg_intrinsic_reward)
mva_lst.append(mva)
print('Episodes: {}, AVG Score: {:.3f}, Score: {}, AVG reward i: {:.6f}'.format(n_eps, mva, score, avg_intrinsic_reward))

View File

@ -1,175 +0,0 @@
import cv2
import numpy as np
import collections
import gym
from gym.spaces import Box
import torch
import torch.nn.functional as F
from torchvision import transforms as T
import gym_super_mario_bros
from nes_py.wrappers import JoypadSpace
from gym_super_mario_bros.actions import RIGHT_ONLY, SIMPLE_MOVEMENT, COMPLEX_MOVEMENT
class SkipFrame(gym.Wrapper):
def __init__(self, env, skip):
"""Return only every `skip`-th frame"""
super().__init__(env)
self._skip = skip
def step(self, action):
"""Repeat action, and sum reward"""
total_reward = 0.0
for i in range(self._skip):
# Accumulate reward and repeat the same action
obs, reward, done, trunk, info = self.env.step(action)
total_reward += reward
if done:
break
return obs, total_reward, done, trunk, info
class GrayScaleObservation(gym.ObservationWrapper):
def __init__(self, env):
super().__init__(env)
obs_shape = self.observation_space.shape[:2]
self.observation_space = Box(low=0, high=255, shape=obs_shape, dtype=np.uint8)
def permute_orientation(self, observation):
# permute [H, W, C] array to [C, H, W] tensor
observation = np.transpose(observation, (2, 0, 1))
observation = torch.tensor(observation.copy(), dtype=torch.float)
return observation
def observation(self, observation):
observation = self.permute_orientation(observation)
transform = T.Grayscale()
observation = transform(observation)
return observation
class ResizeObservation(gym.ObservationWrapper):
def __init__(self, env, shape):
super().__init__(env)
if isinstance(shape, int):
self.shape = (shape, shape)
else:
self.shape = tuple(shape)
obs_shape = self.shape + self.observation_space.shape[2:]
self.observation_space = Box(low=0, high=255, shape=obs_shape, dtype=np.uint8)
def observation(self, observation):
transforms = T.Compose(
[T.Resize(self.shape), T.Normalize(0, 255)]
)
observation = transforms(observation).squeeze(0)
return observation
class MaxAndSkipEnv(gym.Wrapper):
"""
Each action of the agent is repeated over skip frames
return only every `skip`-th frame
"""
def __init__(self, env=None, skip=4):
super(MaxAndSkipEnv, self).__init__(env)
# most recent raw observations (for max pooling across time steps)
self._obs_buffer = collections.deque(maxlen=2)
self._skip = skip
def step(self, action):
total_reward = 0.0
done = None
for _ in range(self._skip):
obs, reward, done, info = self.env.step(action)
self._obs_buffer.append(obs)
total_reward += reward
if done:
break
max_frame = np.max(np.stack(self._obs_buffer), axis=0)
return max_frame, total_reward, done, info
def reset(self):
"""Clear past frame buffer and init to first obs"""
self._obs_buffer.clear()
obs = self.env.reset()
self._obs_buffer.append(obs)
return obs
class MarioRescale84x84(gym.ObservationWrapper):
"""
Downsamples/Rescales each frame to size 84x84 with greyscale
"""
def __init__(self, env=None):
super(MarioRescale84x84, self).__init__(env)
self.observation_space = gym.spaces.Box(low=0, high=255, shape=(84, 84, 1), dtype=np.uint8)
def observation(self, obs):
return MarioRescale84x84.process(obs)
@staticmethod
def process(frame):
if frame.size == 240 * 256 * 3:
img = np.reshape(frame, [240, 256, 3]).astype(np.float32)
else:
assert False, "Unknown resolution."
# image normalization on RBG
img = img[:, :, 0] * 0.299 + img[:, :, 1] * 0.587 + img[:, :, 2] * 0.114
resized_screen = cv2.resize(img, (84, 110), interpolation=cv2.INTER_AREA)
x_t = resized_screen[18:102, :]
x_t = np.reshape(x_t, [84, 84, 1])
return x_t.astype(np.uint8)
class ImageToPyTorch(gym.ObservationWrapper):
"""
Each frame is converted to PyTorch tensors
"""
def __init__(self, env):
super(ImageToPyTorch, self).__init__(env)
old_shape = self.observation_space.shape
self.observation_space = gym.spaces.Box(low=0.0, high=1.0, shape=(old_shape[-1], old_shape[0], old_shape[1]), dtype=np.float32)
def observation(self, observation):
return np.moveaxis(observation, 2, 0)
class BufferWrapper(gym.ObservationWrapper):
"""
Only every k-th frame is collected by the buffer
"""
def __init__(self, env, n_steps, dtype=np.float32):
super(BufferWrapper, self).__init__(env)
self.dtype = dtype
old_space = env.observation_space
self.observation_space = gym.spaces.Box(old_space.low.repeat(n_steps, axis=0),
old_space.high.repeat(n_steps, axis=0), dtype=dtype)
def reset(self):
self.buffer = np.zeros_like(self.observation_space.low, dtype=self.dtype)
return self.observation(self.env.reset())
def observation(self, observation):
self.buffer[:-1] = self.buffer[1:]
self.buffer[-1] = observation
return self.buffer
class PixelNormalization(gym.ObservationWrapper):
"""
Normalize pixel values in frame --> 0 to 1
"""
def observation(self, obs):
return np.array(obs).astype(np.float32) / 255.0
def create_mario_env(env):
env = MaxAndSkipEnv(env)
env = MarioRescale84x84(env)
env = ImageToPyTorch(env)
env = BufferWrapper(env, 4)
env = PixelNormalization(env)
return JoypadSpace(env, COMPLEX_MOVEMENT)

159
models.py
View File

@ -1,159 +0,0 @@
import torch
import torch.nn as nn
import torch.nn.functional as f
from torch.distributions import Categorical
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Encoder(nn.Module):
def __init__(self, channels, encoded_state_size):
super(Encoder, self).__init__()
self.channels = channels
self.encoded_state_size = encoded_state_size
self.feature_encoder = nn.Sequential(
nn.Conv2d(in_channels=self.channels, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Flatten(),
nn.Linear(in_features=32*4*4, out_features=self.encoded_state_size),
).to(device)
def forward(self, state):
if state.dim() == 3:
state = state.unsqueeze(0)
state = self.feature_encoder(state)
return state
class InverseModel(nn.Module):
def __init__(self, encoded_state_size, action_size=2):
super(InverseModel, self).__init__()
self.encoded_state_size = encoded_state_size
self.action_size = action_size
self.model = nn.Sequential(
nn.Linear(in_features=self.encoded_state_size*2, out_features=256),
nn.LeakyReLU(),
nn.Linear(in_features=256, out_features=self.action_size),
nn.Softmax(dim=-1)
).to(device)
def forward(self, encoded_state, next_encoded_state):
encoded_states = torch.cat((encoded_state, next_encoded_state), dim=-1)
actions = Categorical(self.model(encoded_states))
return actions
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
class ForwardModel(nn.Module):
def __init__(self, encoded_state_size, action_size):
super(ForwardModel, self).__init__()
self.encoded_state_size = encoded_state_size
self.action_size = action_size
self.model = nn.Sequential(
nn.Linear(in_features=self.encoded_state_size+self.action_size, out_features=256),
nn.LeakyReLU(),
nn.Linear(in_features=256, out_features=self.encoded_state_size),
).to(device)
def forward(self, state, action):
state = torch.cat((state, action), dim=-1)
return self.model(state)
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
class Actor(nn.Module):
def __init__(self,encoded_state_size, action_size, state_size=4):
super(Actor, self).__init__()
self.channels = state_size
self.encoded_state_size = encoded_state_size
self.action_size = action_size
self.feature_encoder = nn.Sequential(
nn.Conv2d(in_channels=self.channels, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Flatten(),
nn.Linear(in_features=32*4*4, out_features=self.encoded_state_size),
).to(device)
def actor(self,state):
policy = nn.Sequential(
nn.Linear(in_features=self.encoded_state_size , out_features=256),
nn.LeakyReLU(),
nn.Linear(in_features=256, out_features=self.action_size),
nn.Softmax(dim=-1)
).to(device)
return policy(state)
def forward(self, state):
state = self.feature_encoder(state)
policy = self.actor(state)
actions = Categorical(policy)
return actions
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
class Critic(nn.Module):
def __init__(self, encoded_state_size, state_size=4):
super(Critic, self).__init__()
self.channels = state_size
self.encoded_state_size = encoded_state_size
self.feature_encoder = nn.Sequential(
nn.Conv2d(in_channels=self.channels, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2),
nn.LeakyReLU(),
nn.Flatten(),
nn.Linear(in_features=32*4*4, out_features=self.encoded_state_size),
).to(device)
def critic(self,state):
value = nn.Sequential(
nn.Linear(in_features=self.encoded_state_size , out_features=256),
nn.LeakyReLU(),
nn.Linear(in_features=256, out_features=1),
).to(device)
return value(state)
def forward(self, state):
state = self.feature_encoder(state)
value = self.critic(state)
return value
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)