Compare commits

...

3 Commits

Author SHA1 Message Date
ac714e3495 Correct history with detach 2023-04-10 20:18:39 +02:00
de17cab9f5 Add MOCO to introduce lower bound loss 2023-04-10 20:18:17 +02:00
05dd20cdfa Add a class to freeze parameters 2023-04-10 20:17:44 +02:00
3 changed files with 182 additions and 78 deletions

View File

@ -19,7 +19,7 @@ class ObservationEncoder(nn.Module):
input_channels = obs_shape[0] if i == 0 else output_channels
output_channels = num_filters * (2 ** i)
layers.append(nn.Conv2d(in_channels=input_channels, out_channels= output_channels, kernel_size=4, stride=2))
layers.append(nn.ReLU())
layers.append(nn.LeakyReLU())
self.convs = nn.Sequential(*layers)
@ -196,7 +196,8 @@ class TransitionModel(nn.Module):
def imagine_step(self, prev_state, prev_action, prev_history):
state_action = self.act_fn(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1)))
history = self.history_cell(torch.cat([state_action, prev_history], dim=-1), prev_history)
prev_hist = prev_history.detach()
history = self.history_cell(torch.cat([state_action, prev_hist], dim=-1), prev_hist)
state_prior = self.fc_state_prior(torch.cat([history, prev_state, prev_action], dim=-1))
state_prior_mean, state_prior_std = torch.chunk(state_prior, 2, dim=-1)

View File

@ -10,14 +10,17 @@ import dmc2gym
import tqdm
import wandb
import utils
from utils import ReplayBuffer, make_env, save_image
from models import ObservationEncoder, ObservationDecoder, TransitionModel, CLUBSample, Actor, ValueModel, RewardModel
from utils import ReplayBuffer, FreezeParameters, make_env, soft_update_params, save_image
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
from logger import Logger
from video import VideoRecorder
from dmc2gym.wrappers import set_global_var
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
#from agent.baseline_agent import BaselineAgent
#from agent.bisim_agent import BisimAgent
#from agent.deepmdp_agent import DeepMDPAgent
@ -53,23 +56,27 @@ def parse_args():
parser.add_argument('--num-units', type=int, default=200, help='num hidden units for reward/value/discount models')
parser.add_argument('--load_encoder', default=None, type=str)
parser.add_argument('--imagine_horizon', default=15, type=str)
parser.add_argument('--grad_clip_norm', type=float, default=100.0, help='Gradient clipping norm')
# eval
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
parser.add_argument('--num_eval_episodes', default=20, type=int)
# critic
parser.add_argument('--critic_lr', default=1e-3, type=float)
parser.add_argument('--critic_beta', default=0.9, type=float)
parser.add_argument('--critic_tau', default=0.005, type=float)
parser.add_argument('--critic_target_update_freq', default=2, type=int)
# value
parser.add_argument('--value_lr', default=1e-4, type=float)
parser.add_argument('--value_beta', default=0.9, type=float)
parser.add_argument('--value_tau', default=0.005, type=float)
parser.add_argument('--value_target_update_freq', default=2, type=int)
# reward
parser.add_argument('--reward_lr', default=1e-4, type=float)
# actor
parser.add_argument('--actor_lr', default=1e-3, type=float)
parser.add_argument('--actor_lr', default=1e-4, type=float)
parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float)
parser.add_argument('--actor_update_freq', default=2, type=int)
# encoder/decoder
# world/encoder/decoder
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
parser.add_argument('--encoder_feature_dim', default=50, type=int)
parser.add_argument('--world_model_lr', default=1e-3, type=float)
parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.005, type=float)
parser.add_argument('--encoder_stride', default=1, type=int)
@ -79,6 +86,7 @@ def parse_args():
parser.add_argument('--decoder_weight_lambda', default=0.0, type=float)
parser.add_argument('--num_layers', default=4, type=int)
parser.add_argument('--num_filters', default=32, type=int)
parser.add_argument('--aug', action='store_true')
# sac
parser.add_argument('--discount', default=0.99, type=float)
parser.add_argument('--init_temperature', default=0.01, type=float)
@ -154,6 +162,7 @@ class DPI:
self.build_models(use_saved=False, saved_model_dir=self.model_dir)
def build_models(self, use_saved, saved_model_dir=None):
# World Models
self.obs_encoder = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (12,84,84)
state_size=self.args.state_size # 128
@ -176,12 +185,14 @@ class DPI:
history_size=self.args.history_size, # 128
)
self.action_model = Actor(
# Actor Model
self.actor_model = Actor(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256,
action_size=self.env.action_space.shape[0], # 6
)
# Value Models
self.value_model = ValueModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
@ -196,13 +207,39 @@ class DPI:
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
)
# Contrastive Models
self.prjoection_head = ProjectionHead(
state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256
)
self.prjoection_head_momentum = ProjectionHead(
state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256
)
self.contrastive_head = ContrastiveHead(
hidden_size=self.args.hidden_size, # 256
)
# model parameters
self.model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_encoder_momentum.parameters()) + \
list(self.obs_decoder.parameters()) + list(self.transition_model.parameters())
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_decoder.parameters()) + \
list(self.value_model.parameters()) + list(self.transition_model.parameters()) + \
list(self.prjoection_head.parameters())
# optimizer
self.optimizer = torch.optim.Adam(self.model_parameters, lr=self.args.encoder_lr)
# optimizers
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr)
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr)
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr)
# Create Modules
self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.value_model, self.transition_model, self.prjoection_head]
self.value_modules = [self.value_model]
self.actor_modules = [self.actor_model]
if use_saved:
self._use_saved_models(saved_model_dir)
@ -214,6 +251,8 @@ class DPI:
def collect_sequences(self, episodes):
obs = self.env.reset()
self.ob_mean = np.mean(obs, 0).astype(np.float32)
self.ob_std = np.std(obs, 0).mean().astype(np.float32)
#obs_clean = self.env_clean.reset()
done = False
@ -265,48 +304,84 @@ class DPI:
self.history = self.transition_model.prev_history # (N,128)
# Train encoder
total_ub_loss = 0
total_encoder_loss = 0
for i in range(self.args.episode_length-1):
if i > 0:
# Encode observations and next_observations
self.last_states_dict = self.obs_encoder(last_observations[i])
self.current_states_dict = self.obs_encoder(current_observations[i])
self.next_states_dict = self.obs_encoder_momentum(next_observations[i])
self.action = actions[i] # (N,6)
history = self.transition_model.prev_history
# Encode negative observations
idx = torch.randperm(current_observations[i].shape[0]) # random permutation on batch
random_time_index = torch.randint(0, self.args.episode_length-2, (1,)).item() # random time index
negative_current_observations = current_observations[random_time_index][idx]
self.negative_current_states_dict = self.obs_encoder(negative_current_observations)
step = 0
total_steps = 10000
while step < total_steps:
for i in range(self.args.episode_length-1):
if i > 0:
# Encode observations and next_observations
self.last_states_dict = self.get_features(last_observations[i])
self.current_states_dict = self.get_features(current_observations[i])
self.next_states_dict = self.get_features(next_observations[i], momentum=True)
self.action = actions[i] # (N,6)
history = self.transition_model.prev_history
# Encode negative observations
idx = torch.randperm(current_observations[i].shape[0]) # random permutation on batch
random_time_index = torch.randint(0, self.args.episode_length-2, (1,)).item() # random time index
negative_current_observations = current_observations[random_time_index][idx]
self.negative_current_states_dict = self.obs_encoder(negative_current_observations)
# Predict current state from past state with transition model
last_states_sample = self.last_states_dict["sample"]
predicted_current_state_dict = self.transition_model.imagine_step(last_states_sample, self.action, self.history)
self.history = predicted_current_state_dict["history"]
# Calculate upper bound loss
ub_loss = self._upper_bound_minimization(self.last_states_dict,
self.current_states_dict,
self.negative_current_states_dict,
predicted_current_state_dict
)
# Calculate encoder loss
encoder_loss = self._past_encoder_loss(self.current_states_dict,
predicted_current_state_dict)
# Predict current state from past state with transition model
last_states_sample = self.last_states_dict["sample"]
predicted_current_state_dict = self.transition_model.imagine_step(last_states_sample, self.action, self.history)
self.history = predicted_current_state_dict["history"]
total_ub_loss += ub_loss
total_encoder_loss += encoder_loss
imagine_horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"], self.action, self.history, imagine_horizon)
# Calculate upper bound loss
ub_loss = self._upper_bound_minimization(self.last_states_dict,
self.current_states_dict,
self.negative_current_states_dict,
predicted_current_state_dict
)
# Calculate encoder loss
encoder_loss = self._past_encoder_loss(self.current_states_dict,
predicted_current_state_dict)
#exit()
#total_ub_loss += ub_loss
#total_encoder_loss += encoder_loss
# contrastive projection
vec_anchor = predicted_current_state_dict["sample"]
vec_positive = self.next_states_dict["sample"].detach()
z_anchor = self.prjoection_head(vec_anchor, self.action)
z_positive = self.prjoection_head_momentum(vec_positive, next_actions[i]).detach()
#print(total_ub_loss, total_encoder_loss)
# contrastive loss
logits = self.contrastive_head(z_anchor, z_positive)
labels = labels = torch.arange(logits.shape[0]).long()
lb_loss = F.cross_entropy(logits, labels)
# update models
world_model_loss = encoder_loss + 1e-1 * ub_loss + lb_loss #1e-1 * ub_loss + 1e-5 * encoder_loss + 1e-1 * lb_loss
print("ub_loss: {:.4f}, encoder_loss: {:.4f}, lb_loss: {:.4f}".format(ub_loss, encoder_loss, lb_loss))
print("world_model_loss: {:.4f}".format(world_model_loss))
self.world_model_opt.zero_grad()
world_model_loss.backward()
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
self.world_model_opt.step()
# behaviour learning
with FreezeParameters(self.world_model_modules):
imagine_horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(),
self.action, self.history.detach(),
imagine_horizon)
print(imagined_rollout["sample"].shape, imagined_rollout["distribution"][0].sample().shape)
#exit()
step += 1
if step>total_steps:
print("Training finished")
break
#exit()
#print(total_ub_loss, total_encoder_loss)
@ -315,7 +390,7 @@ class DPI:
current_states,
negative_current_states,
predicted_current_states)
club_loss = club_sample()
club_loss = club_sample.loglikeli()
return club_loss
def _past_encoder_loss(self, curr_states_dict, predicted_curr_states_dict):
@ -325,42 +400,27 @@ class DPI:
# predicted current state distribution
predicted_curr_states_dist = predicted_curr_states_dict["distribution"]
# KL divergence loss
loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean()
return loss
"""
def _past_encoder_loss(self, states, next_states, states_dist, next_states_dist, actions, history, step):
# Imagine next state
if step == 0:
actions = torch.zeros(self.args.batch_size, self.env.action_space.shape[0]).float() # Zero action for first step
imagined_next_states = self.transition_model.imagine_step(states, actions, history)
self.history = imagined_next_states["history"]
else:
imagined_next_states = self.transition_model.imagine_step(states, actions, self.history) # (N,128)
# State Distribution
imagined_next_states_dist = imagined_next_states["distribution"]
# KL divergence loss
loss = torch.distributions.kl.kl_divergence(imagined_next_states_dist, next_states_dist["distribution"]).mean()
return loss
"""
def get_features(self, x, momentum=False):
if self.aug:
import torchvision.transforms.functional as fn
x = x/255.0 - 0.5 # Preprocessing
if self.args.aug:
x = T.RandomCrop((80, 80))(x) # (None,80,80,4)
x = T.functional.pad(x, (4, 4, 4, 4), "symmetric") # (None,88,88,4)
x = T.RandomCrop((84, 84))(x) # (None,84,84,4)
with torch.no_grad():
x = (x.float() - self.ob_mean) / self.ob_std
if momentum:
x = self.obs_encoder(x).detach()
else:
x = self.obs_encoder_momentum(x)
else:
x = self.obs_encoder(x)
return x
if __name__ == '__main__':

View File

@ -17,6 +17,7 @@ import dmc2gym
import cv2
from PIL import Image
from typing import Iterable
class eval_mode(object):
@ -197,6 +198,12 @@ def make_env(args):
)
return env
def soft_update_params(net, target_net, tau):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(
tau * param.data + (1 - tau) * target_param.data
)
def save_image(array, filename):
array = array.transpose(1, 2, 0)
array = (array * 255).astype(np.uint8)
@ -256,4 +263,40 @@ class CorruptVideos:
print(f"{filepath} is corrupt.")
if delete:
self._delete_corrupt_video(filepath)
print(f"Deleted {filepath}")
print(f"Deleted {filepath}")
def get_parameters(modules: Iterable[nn.Module]):
"""
Given a list of torch modules, returns a list of their parameters.
:param modules: iterable of modules
:returns: a list of parameters
"""
model_parameters = []
for module in modules:
model_parameters += list(module.parameters())
return model_parameters
class FreezeParameters:
def __init__(self, modules: Iterable[nn.Module]):
"""
Context manager to locally freeze gradients.
In some cases with can speed up computation because gradients aren't calculated for these listed modules.
example:
```
with FreezeParameters([module]):
output_tensor = module(input_tensor)
```
:param modules: iterable of modules. used to call .parameters() to freeze gradients.
"""
self.modules = modules
self.param_states = [p.requires_grad for p in get_parameters(self.modules)]
def __enter__(self):
for param in get_parameters(self.modules):
param.requires_grad = False
def __exit__(self, exc_type, exc_val, exc_tb):
for i, param in enumerate(get_parameters(self.modules)):
param.requires_grad = self.param_states[i]