Add MOCO to introduce lower bound loss
This commit is contained in:
parent
05dd20cdfa
commit
de17cab9f5
210
DPI/train.py
210
DPI/train.py
@ -10,14 +10,17 @@ import dmc2gym
|
||||
import tqdm
|
||||
import wandb
|
||||
import utils
|
||||
from utils import ReplayBuffer, make_env, save_image
|
||||
from models import ObservationEncoder, ObservationDecoder, TransitionModel, CLUBSample, Actor, ValueModel, RewardModel
|
||||
from utils import ReplayBuffer, FreezeParameters, make_env, soft_update_params, save_image
|
||||
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
|
||||
from logger import Logger
|
||||
from video import VideoRecorder
|
||||
from dmc2gym.wrappers import set_global_var
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision.transforms as T
|
||||
|
||||
|
||||
#from agent.baseline_agent import BaselineAgent
|
||||
#from agent.bisim_agent import BisimAgent
|
||||
#from agent.deepmdp_agent import DeepMDPAgent
|
||||
@ -53,23 +56,27 @@ def parse_args():
|
||||
parser.add_argument('--num-units', type=int, default=200, help='num hidden units for reward/value/discount models')
|
||||
parser.add_argument('--load_encoder', default=None, type=str)
|
||||
parser.add_argument('--imagine_horizon', default=15, type=str)
|
||||
parser.add_argument('--grad_clip_norm', type=float, default=100.0, help='Gradient clipping norm')
|
||||
# eval
|
||||
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
|
||||
parser.add_argument('--num_eval_episodes', default=20, type=int)
|
||||
# critic
|
||||
parser.add_argument('--critic_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--critic_beta', default=0.9, type=float)
|
||||
parser.add_argument('--critic_tau', default=0.005, type=float)
|
||||
parser.add_argument('--critic_target_update_freq', default=2, type=int)
|
||||
# value
|
||||
parser.add_argument('--value_lr', default=1e-4, type=float)
|
||||
parser.add_argument('--value_beta', default=0.9, type=float)
|
||||
parser.add_argument('--value_tau', default=0.005, type=float)
|
||||
parser.add_argument('--value_target_update_freq', default=2, type=int)
|
||||
# reward
|
||||
parser.add_argument('--reward_lr', default=1e-4, type=float)
|
||||
# actor
|
||||
parser.add_argument('--actor_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--actor_lr', default=1e-4, type=float)
|
||||
parser.add_argument('--actor_beta', default=0.9, type=float)
|
||||
parser.add_argument('--actor_log_std_min', default=-10, type=float)
|
||||
parser.add_argument('--actor_log_std_max', default=2, type=float)
|
||||
parser.add_argument('--actor_update_freq', default=2, type=int)
|
||||
# encoder/decoder
|
||||
# world/encoder/decoder
|
||||
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
|
||||
parser.add_argument('--encoder_feature_dim', default=50, type=int)
|
||||
parser.add_argument('--world_model_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--encoder_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--encoder_tau', default=0.005, type=float)
|
||||
parser.add_argument('--encoder_stride', default=1, type=int)
|
||||
@ -79,6 +86,7 @@ def parse_args():
|
||||
parser.add_argument('--decoder_weight_lambda', default=0.0, type=float)
|
||||
parser.add_argument('--num_layers', default=4, type=int)
|
||||
parser.add_argument('--num_filters', default=32, type=int)
|
||||
parser.add_argument('--aug', action='store_true')
|
||||
# sac
|
||||
parser.add_argument('--discount', default=0.99, type=float)
|
||||
parser.add_argument('--init_temperature', default=0.01, type=float)
|
||||
@ -154,6 +162,7 @@ class DPI:
|
||||
self.build_models(use_saved=False, saved_model_dir=self.model_dir)
|
||||
|
||||
def build_models(self, use_saved, saved_model_dir=None):
|
||||
# World Models
|
||||
self.obs_encoder = ObservationEncoder(
|
||||
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (12,84,84)
|
||||
state_size=self.args.state_size # 128
|
||||
@ -176,12 +185,14 @@ class DPI:
|
||||
history_size=self.args.history_size, # 128
|
||||
)
|
||||
|
||||
self.action_model = Actor(
|
||||
# Actor Model
|
||||
self.actor_model = Actor(
|
||||
state_size=self.args.state_size, # 128
|
||||
hidden_size=self.args.hidden_size, # 256,
|
||||
action_size=self.env.action_space.shape[0], # 6
|
||||
)
|
||||
|
||||
# Value Models
|
||||
self.value_model = ValueModel(
|
||||
state_size=self.args.state_size, # 128
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
@ -196,13 +207,39 @@ class DPI:
|
||||
state_size=self.args.state_size, # 128
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
)
|
||||
|
||||
# Contrastive Models
|
||||
self.prjoection_head = ProjectionHead(
|
||||
state_size=self.args.state_size, # 128
|
||||
action_size=self.env.action_space.shape[0], # 6
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
)
|
||||
|
||||
self.prjoection_head_momentum = ProjectionHead(
|
||||
state_size=self.args.state_size, # 128
|
||||
action_size=self.env.action_space.shape[0], # 6
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
)
|
||||
|
||||
self.contrastive_head = ContrastiveHead(
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
)
|
||||
|
||||
|
||||
# model parameters
|
||||
self.model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_encoder_momentum.parameters()) + \
|
||||
list(self.obs_decoder.parameters()) + list(self.transition_model.parameters())
|
||||
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_decoder.parameters()) + \
|
||||
list(self.value_model.parameters()) + list(self.transition_model.parameters()) + \
|
||||
list(self.prjoection_head.parameters())
|
||||
|
||||
# optimizer
|
||||
self.optimizer = torch.optim.Adam(self.model_parameters, lr=self.args.encoder_lr)
|
||||
# optimizers
|
||||
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr)
|
||||
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr)
|
||||
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr)
|
||||
|
||||
# Create Modules
|
||||
self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.value_model, self.transition_model, self.prjoection_head]
|
||||
self.value_modules = [self.value_model]
|
||||
self.actor_modules = [self.actor_model]
|
||||
|
||||
if use_saved:
|
||||
self._use_saved_models(saved_model_dir)
|
||||
@ -214,6 +251,8 @@ class DPI:
|
||||
|
||||
def collect_sequences(self, episodes):
|
||||
obs = self.env.reset()
|
||||
self.ob_mean = np.mean(obs, 0).astype(np.float32)
|
||||
self.ob_std = np.std(obs, 0).mean().astype(np.float32)
|
||||
#obs_clean = self.env_clean.reset()
|
||||
done = False
|
||||
|
||||
@ -265,48 +304,84 @@ class DPI:
|
||||
self.history = self.transition_model.prev_history # (N,128)
|
||||
|
||||
# Train encoder
|
||||
total_ub_loss = 0
|
||||
total_encoder_loss = 0
|
||||
for i in range(self.args.episode_length-1):
|
||||
if i > 0:
|
||||
# Encode observations and next_observations
|
||||
self.last_states_dict = self.obs_encoder(last_observations[i])
|
||||
self.current_states_dict = self.obs_encoder(current_observations[i])
|
||||
self.next_states_dict = self.obs_encoder_momentum(next_observations[i])
|
||||
self.action = actions[i] # (N,6)
|
||||
history = self.transition_model.prev_history
|
||||
|
||||
# Encode negative observations
|
||||
idx = torch.randperm(current_observations[i].shape[0]) # random permutation on batch
|
||||
random_time_index = torch.randint(0, self.args.episode_length-2, (1,)).item() # random time index
|
||||
negative_current_observations = current_observations[random_time_index][idx]
|
||||
self.negative_current_states_dict = self.obs_encoder(negative_current_observations)
|
||||
step = 0
|
||||
total_steps = 10000
|
||||
while step < total_steps:
|
||||
for i in range(self.args.episode_length-1):
|
||||
if i > 0:
|
||||
# Encode observations and next_observations
|
||||
self.last_states_dict = self.get_features(last_observations[i])
|
||||
self.current_states_dict = self.get_features(current_observations[i])
|
||||
self.next_states_dict = self.get_features(next_observations[i], momentum=True)
|
||||
self.action = actions[i] # (N,6)
|
||||
history = self.transition_model.prev_history
|
||||
|
||||
# Encode negative observations
|
||||
idx = torch.randperm(current_observations[i].shape[0]) # random permutation on batch
|
||||
random_time_index = torch.randint(0, self.args.episode_length-2, (1,)).item() # random time index
|
||||
negative_current_observations = current_observations[random_time_index][idx]
|
||||
self.negative_current_states_dict = self.obs_encoder(negative_current_observations)
|
||||
|
||||
# Predict current state from past state with transition model
|
||||
last_states_sample = self.last_states_dict["sample"]
|
||||
predicted_current_state_dict = self.transition_model.imagine_step(last_states_sample, self.action, self.history)
|
||||
self.history = predicted_current_state_dict["history"]
|
||||
|
||||
# Calculate upper bound loss
|
||||
ub_loss = self._upper_bound_minimization(self.last_states_dict,
|
||||
self.current_states_dict,
|
||||
self.negative_current_states_dict,
|
||||
predicted_current_state_dict
|
||||
)
|
||||
|
||||
# Calculate encoder loss
|
||||
encoder_loss = self._past_encoder_loss(self.current_states_dict,
|
||||
predicted_current_state_dict)
|
||||
# Predict current state from past state with transition model
|
||||
last_states_sample = self.last_states_dict["sample"]
|
||||
predicted_current_state_dict = self.transition_model.imagine_step(last_states_sample, self.action, self.history)
|
||||
self.history = predicted_current_state_dict["history"]
|
||||
|
||||
total_ub_loss += ub_loss
|
||||
total_encoder_loss += encoder_loss
|
||||
|
||||
imagine_horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
|
||||
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"], self.action, self.history, imagine_horizon)
|
||||
|
||||
# Calculate upper bound loss
|
||||
ub_loss = self._upper_bound_minimization(self.last_states_dict,
|
||||
self.current_states_dict,
|
||||
self.negative_current_states_dict,
|
||||
predicted_current_state_dict
|
||||
)
|
||||
|
||||
# Calculate encoder loss
|
||||
encoder_loss = self._past_encoder_loss(self.current_states_dict,
|
||||
predicted_current_state_dict)
|
||||
|
||||
#exit()
|
||||
#total_ub_loss += ub_loss
|
||||
#total_encoder_loss += encoder_loss
|
||||
|
||||
# contrastive projection
|
||||
vec_anchor = predicted_current_state_dict["sample"]
|
||||
vec_positive = self.next_states_dict["sample"].detach()
|
||||
z_anchor = self.prjoection_head(vec_anchor, self.action)
|
||||
z_positive = self.prjoection_head_momentum(vec_positive, next_actions[i]).detach()
|
||||
|
||||
#print(total_ub_loss, total_encoder_loss)
|
||||
# contrastive loss
|
||||
logits = self.contrastive_head(z_anchor, z_positive)
|
||||
labels = labels = torch.arange(logits.shape[0]).long()
|
||||
lb_loss = F.cross_entropy(logits, labels)
|
||||
|
||||
|
||||
# update models
|
||||
world_model_loss = encoder_loss + 1e-1 * ub_loss + lb_loss #1e-1 * ub_loss + 1e-5 * encoder_loss + 1e-1 * lb_loss
|
||||
print("ub_loss: {:.4f}, encoder_loss: {:.4f}, lb_loss: {:.4f}".format(ub_loss, encoder_loss, lb_loss))
|
||||
print("world_model_loss: {:.4f}".format(world_model_loss))
|
||||
self.world_model_opt.zero_grad()
|
||||
world_model_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
|
||||
self.world_model_opt.step()
|
||||
|
||||
|
||||
# behaviour learning
|
||||
with FreezeParameters(self.world_model_modules):
|
||||
imagine_horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
|
||||
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(),
|
||||
self.action, self.history.detach(),
|
||||
imagine_horizon)
|
||||
print(imagined_rollout["sample"].shape, imagined_rollout["distribution"][0].sample().shape)
|
||||
#exit()
|
||||
|
||||
step += 1
|
||||
|
||||
if step>total_steps:
|
||||
print("Training finished")
|
||||
break
|
||||
#exit()
|
||||
|
||||
#print(total_ub_loss, total_encoder_loss)
|
||||
|
||||
|
||||
|
||||
@ -315,7 +390,7 @@ class DPI:
|
||||
current_states,
|
||||
negative_current_states,
|
||||
predicted_current_states)
|
||||
club_loss = club_sample()
|
||||
club_loss = club_sample.loglikeli()
|
||||
return club_loss
|
||||
|
||||
def _past_encoder_loss(self, curr_states_dict, predicted_curr_states_dict):
|
||||
@ -325,42 +400,27 @@ class DPI:
|
||||
# predicted current state distribution
|
||||
predicted_curr_states_dist = predicted_curr_states_dict["distribution"]
|
||||
|
||||
|
||||
|
||||
# KL divergence loss
|
||||
loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean()
|
||||
|
||||
return loss
|
||||
|
||||
"""
|
||||
def _past_encoder_loss(self, states, next_states, states_dist, next_states_dist, actions, history, step):
|
||||
# Imagine next state
|
||||
if step == 0:
|
||||
actions = torch.zeros(self.args.batch_size, self.env.action_space.shape[0]).float() # Zero action for first step
|
||||
imagined_next_states = self.transition_model.imagine_step(states, actions, history)
|
||||
self.history = imagined_next_states["history"]
|
||||
else:
|
||||
imagined_next_states = self.transition_model.imagine_step(states, actions, self.history) # (N,128)
|
||||
|
||||
# State Distribution
|
||||
imagined_next_states_dist = imagined_next_states["distribution"]
|
||||
|
||||
# KL divergence loss
|
||||
loss = torch.distributions.kl.kl_divergence(imagined_next_states_dist, next_states_dist["distribution"]).mean()
|
||||
|
||||
return loss
|
||||
"""
|
||||
|
||||
def get_features(self, x, momentum=False):
|
||||
if self.aug:
|
||||
import torchvision.transforms.functional as fn
|
||||
x = x/255.0 - 0.5 # Preprocessing
|
||||
|
||||
if self.args.aug:
|
||||
x = T.RandomCrop((80, 80))(x) # (None,80,80,4)
|
||||
x = T.functional.pad(x, (4, 4, 4, 4), "symmetric") # (None,88,88,4)
|
||||
x = T.RandomCrop((84, 84))(x) # (None,84,84,4)
|
||||
|
||||
with torch.no_grad():
|
||||
x = (x.float() - self.ob_mean) / self.ob_std
|
||||
if momentum:
|
||||
x = self.obs_encoder(x).detach()
|
||||
else:
|
||||
x = self.obs_encoder_momentum(x)
|
||||
else:
|
||||
x = self.obs_encoder(x)
|
||||
return x
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
Loading…
Reference in New Issue
Block a user