Adding model architecture for Reward, Value and Target Value
This commit is contained in:
parent
47090449d1
commit
8fd56ba94d
@ -93,7 +93,7 @@ class ObservationDecoder(nn.Module):
|
|||||||
return out_dist
|
return out_dist
|
||||||
|
|
||||||
|
|
||||||
class ActionDecoder(nn.Module):
|
class Actor(nn.Module):
|
||||||
def __init__(self, state_size, hidden_size, action_size, num_layers=5):
|
def __init__(self, state_size, hidden_size, action_size, num_layers=5):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.state_size = state_size
|
self.state_size = state_size
|
||||||
@ -151,8 +151,24 @@ class ValueModel(nn.Module):
|
|||||||
value = self.value_model(state)
|
value = self.value_model(state)
|
||||||
value_dist = torch.distributions.independent.Independent(torch.distributions.Normal(value, 1), 1)
|
value_dist = torch.distributions.independent.Independent(torch.distributions.Normal(value, 1), 1)
|
||||||
return value_dist
|
return value_dist
|
||||||
|
|
||||||
|
|
||||||
|
class RewardModel(nn.Module):
|
||||||
|
def __init__(self, state_size, hidden_size):
|
||||||
|
super().__init__()
|
||||||
|
self.reward_model = nn.Sequential(
|
||||||
|
nn.Linear(state_size, hidden_size),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(hidden_size, hidden_size),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(hidden_size, 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, state):
|
||||||
|
reward = self.reward_model(state).squeeze(dim=1)
|
||||||
|
return reward
|
||||||
|
|
||||||
|
|
||||||
class TransitionModel(nn.Module):
|
class TransitionModel(nn.Module):
|
||||||
def __init__(self, state_size, hidden_size, action_size, history_size):
|
def __init__(self, state_size, hidden_size, action_size, history_size):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -194,8 +210,7 @@ class TransitionModel(nn.Module):
|
|||||||
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": history, "distribution": state_prior_dist}
|
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": history, "distribution": state_prior_dist}
|
||||||
return prior
|
return prior
|
||||||
|
|
||||||
def stack_states(self, states, dim=0):
|
def stack_states(self, states, dim=0):
|
||||||
|
|
||||||
s = dict(
|
s = dict(
|
||||||
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
||||||
std = torch.stack([state['std'] for state in states], dim=dim),
|
std = torch.stack([state['std'] for state in states], dim=dim),
|
||||||
|
Loading…
Reference in New Issue
Block a user