Adding actor and value learners

This commit is contained in:
Vedant Dave 2023-04-12 09:33:42 +02:00
parent cc48b0b0f8
commit 5ded7bc8f1

View File

@ -65,6 +65,7 @@ def parse_args():
parser.add_argument('--value_beta', default=0.9, type=float)
parser.add_argument('--value_tau', default=0.005, type=float)
parser.add_argument('--value_target_update_freq', default=2, type=int)
parser.add_argument('--td_lambda', default=0.95, type=int)
# reward
parser.add_argument('--reward_lr', default=1e-4, type=float)
# actor
@ -77,6 +78,7 @@ def parse_args():
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
parser.add_argument('--encoder_feature_dim', default=50, type=int)
parser.add_argument('--world_model_lr', default=1e-3, type=float)
parser.add_argument('--past_transition_lr', default=1e-3, type=float)
parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.005, type=float)
parser.add_argument('--encoder_stride', default=1, type=int)
@ -94,6 +96,7 @@ def parse_args():
parser.add_argument('--alpha_beta', default=0.9, type=float)
# misc
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--logging_freq', default=100, type=int)
parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_model', default=False, action='store_true')
@ -102,6 +105,7 @@ def parse_args():
parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble'])
parser.add_argument('--render', default=False, action='store_true')
parser.add_argument('--port', default=2000, type=int)
parser.add_argument('--num_likelihood_updates', default=5, type=int)
args = parser.parse_args()
return args
@ -145,12 +149,6 @@ class DPI:
seq_len=self.args.episode_length,
batch_size=args.batch_size,
args=self.args)
self.data_buffer_clean = ReplayBuffer(size=self.args.replay_buffer_capacity,
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size),
action_size=self.env.action_space.shape[0],
seq_len=self.args.episode_length,
batch_size=args.batch_size,
args=self.args)
# create work directory
utils.make_dir(self.args.work_dir)
@ -230,11 +228,13 @@ class DPI:
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_decoder.parameters()) + \
list(self.value_model.parameters()) + list(self.transition_model.parameters()) + \
list(self.prjoection_head.parameters())
self.past_transition_parameters = self.transition_model.parameters()
# optimizers
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr)
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr)
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr)
self.past_transition_opt = torch.optim.Adam(self.past_transition_parameters, self.args.past_transition_lr)
# Create Modules
self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.value_model, self.transition_model, self.prjoection_head]
@ -269,7 +269,7 @@ class DPI:
next_obs, rew, done, _ = self.env.step(action)
#next_obs_clean, _, done, _ = self.env_clean.step(action)
self.data_buffer.add(obs, action, next_obs, episode_count+1, done)
self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done)
#self.data_buffer_clean.add(obs_clean, action, next_obs_clean, episode_count+1, done)
if args.save_video:
@ -293,11 +293,12 @@ class DPI:
self.collect_sequences(self.args.batch_size)
# Group observations and next_observations by steps from past to present
last_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"observations")).float()[:self.args.episode_length-1]
last_observations = torch.tensor(self.data_buffer.group_steps(self.data_buffer,"observations")).float()[:self.args.episode_length-1]
current_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"next_observations")).float()[:self.args.episode_length-1]
next_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"next_observations")).float()[1:]
actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[:self.args.episode_length-1]
next_actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[1:]
rewards = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"rewards",obs=False)).float()[1:]
# Initialize transition model states
self.transition_model.init_states(self.args.batch_size, device="cpu") # (N,128)
@ -306,6 +307,7 @@ class DPI:
# Train encoder
step = 0
total_steps = 10000
metrics = {}
while step < total_steps:
for i in range(self.args.episode_length-1):
if i > 0:
@ -314,6 +316,7 @@ class DPI:
self.current_states_dict = self.get_features(current_observations[i])
self.next_states_dict = self.get_features(next_observations[i], momentum=True)
self.action = actions[i] # (N,6)
self.next_action = next_actions[i] # (N,6)
history = self.transition_model.prev_history
# Encode negative observations
@ -327,14 +330,14 @@ class DPI:
predicted_current_state_dict = self.transition_model.imagine_step(last_states_sample, self.action, self.history)
self.history = predicted_current_state_dict["history"]
# Calculate upper bound loss
ub_loss = self._upper_bound_minimization(self.last_states_dict,
likeli_loss, ub_loss = self._upper_bound_minimization(self.last_states_dict,
self.current_states_dict,
self.negative_current_states_dict,
predicted_current_state_dict
)
#likeli_loss = torch.tensor(likeli_loss.numpy(),dtype=torch.float32, requires_grad=True)
#ikeli_loss = likeli_loss.mean()
# Calculate encoder loss
encoder_loss = self._past_encoder_loss(self.current_states_dict,
@ -356,31 +359,83 @@ class DPI:
# update models
world_model_loss = encoder_loss + 1e-1 * ub_loss + lb_loss #1e-1 * ub_loss + 1e-5 * encoder_loss + 1e-1 * lb_loss
print("ub_loss: {:.4f}, encoder_loss: {:.4f}, lb_loss: {:.4f}".format(ub_loss, encoder_loss, lb_loss))
print("world_model_loss: {:.4f}".format(world_model_loss))
"""
print(likeli_loss)
for i in range(self.args.num_likelihood_updates):
self.past_transition_opt.zero_grad()
print(likeli_loss)
likeli_loss.backward()
nn.utils.clip_grad_norm_(self.past_transition_parameters, self.args.grad_clip_norm)
self.past_transition_opt.step()
print(encoder_loss, ub_loss, lb_loss, step)
"""
world_model_loss = encoder_loss + ub_loss + lb_loss
self.world_model_opt.zero_grad()
world_model_loss.backward()
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
self.world_model_opt.step()
"""
if step % self.args.logging_freq:
metrics['Upper Bound Loss'] = ub_loss.item()
metrics['Encoder Loss'] = encoder_loss.item()
metrics["Lower Bound Loss"] = lb_loss.item()
metrics["World Model Loss"] = world_model_loss.item()
wandb.log(metrics)
"""
# behaviour learning
with FreezeParameters(self.world_model_modules):
imagine_horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
imagine_horizon = self.args.imagine_horizon #np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(),
self.action, self.history.detach(),
self.next_action, self.history.detach(),
imagine_horizon)
print(imagined_rollout["sample"].shape, imagined_rollout["distribution"][0].sample().shape)
#exit()
#print(imagined_rollout["sample"].shape, imagined_rollout["distribution"][0].sample().shape)
# actor loss
with FreezeParameters(self.world_model_modules + self.value_modules):
imag_rew_dist = self.reward_model(imagined_rollout["sample"])
target_imag_val_dist = self.target_value_model(imagined_rollout["sample"])
imag_rews = imag_rew_dist.mean
target_imag_vals = target_imag_val_dist.mean
discounts = self.args.discount * torch.ones_like(imag_rews).detach()
self.target_returns = self._compute_lambda_return(imag_rews[:-1],
target_imag_vals[:-1],
discounts[:-1] ,
self.args.td_lambda,
target_imag_vals[-1])
discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0)
self.discounts = torch.cumprod(discounts, 0).detach()
actor_loss = -torch.mean(self.discounts * self.target_returns)
self.actor_opt.zero_grad()
actor_loss.backward()
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
self.actor_opt.step()
# value loss
with torch.no_grad():
value_feat = imagined_rollout["sample"][:-1].detach()
value_targ = self.target_returns.detach()
value_dist = self.value_model(value_feat)
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
self.value_opt.zero_grad()
value_loss.backward()
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm)
self.value_opt.step()
step += 1
if step>total_steps:
print("Training finished")
break
#exit()
#print(total_ub_loss, total_encoder_loss)
@ -390,8 +445,9 @@ class DPI:
current_states,
negative_current_states,
predicted_current_states)
club_loss = club_sample.loglikeli()
return club_loss
likelihood_loss = club_sample.learning_loss()
club_loss = club_sample()
return likelihood_loss, club_loss
def _past_encoder_loss(self, curr_states_dict, predicted_curr_states_dict):
# current state distribution
@ -423,6 +479,19 @@ class DPI:
x = self.obs_encoder(x)
return x
def _compute_lambda_return(self, rewards, values, discounts, td_lam, last_value):
next_values = torch.cat([values[1:], last_value.unsqueeze(0)],0)
targets = rewards + discounts * next_values * (1-td_lam)
rets =[]
last_rew = last_value
for t in range(rewards.shape[0]-1, -1, -1):
last_rew = targets[t] + discounts[t] * td_lam *(last_rew)
rets.append(last_rew)
returns = torch.flip(torch.stack(rets), [0])
return returns
if __name__ == '__main__':
args = parse_args()