Trying some ideas

This commit is contained in:
Vedant Dave 2023-04-15 17:01:57 +02:00
parent 9a2e9f420b
commit 21cefbab48

View File

@ -48,11 +48,11 @@ def parse_args():
# train # train
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc']) parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
parser.add_argument('--init_steps', default=10000, type=int) parser.add_argument('--init_steps', default=10000, type=int)
parser.add_argument('--num_train_steps', default=10000, type=int) parser.add_argument('--num_train_steps', default=100000, type=int)
parser.add_argument('--batch_size', default=30, type=int) #512 parser.add_argument('--batch_size', default=50, type=int) #512
parser.add_argument('--state_size', default=256, type=int) parser.add_argument('--state_size', default=512, type=int)
parser.add_argument('--hidden_size', default=128, type=int) parser.add_argument('--hidden_size', default=256, type=int)
parser.add_argument('--history_size', default=128, type=int) parser.add_argument('--history_size', default=256, type=int)
parser.add_argument('--num-units', type=int, default=50, help='num hidden units for reward/value/discount models') parser.add_argument('--num-units', type=int, default=50, help='num hidden units for reward/value/discount models')
parser.add_argument('--load_encoder', default=None, type=str) parser.add_argument('--load_encoder', default=None, type=str)
parser.add_argument('--imagine_horizon', default=15, type=str) parser.add_argument('--imagine_horizon', default=15, type=str)
@ -60,42 +60,33 @@ def parse_args():
# eval # eval
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000 parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
parser.add_argument('--num_eval_episodes', default=20, type=int) parser.add_argument('--num_eval_episodes', default=20, type=int)
parser.add_argument('--evaluation_interval', default=10000, type=int) # TODO: master had 10000
# value # value
parser.add_argument('--value_lr', default=8e-5, type=float) parser.add_argument('--value_lr', default=1e-3, type=float)
parser.add_argument('--value_beta', default=0.9, type=float) parser.add_argument('--value_beta', default=0.9, type=float)
parser.add_argument('--value_tau', default=0.005, type=float) parser.add_argument('--value_tau', default=0.005, type=float)
parser.add_argument('--value_target_update_freq', default=100, type=int) parser.add_argument('--value_target_update_freq', default=100, type=int)
parser.add_argument('--td_lambda', default=0.95, type=int) parser.add_argument('--td_lambda', default=0.95, type=int)
# actor # actor
parser.add_argument('--actor_lr', default=8e-5, type=float) parser.add_argument('--actor_lr', default=1e-3, type=float)
parser.add_argument('--actor_beta', default=0.9, type=float) parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float) parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float) parser.add_argument('--actor_log_std_max', default=2, type=float)
parser.add_argument('--actor_update_freq', default=2, type=int) parser.add_argument('--actor_update_freq', default=2, type=int)
# world/encoder/decoder # world/encoder/decoder
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity']) parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
parser.add_argument('--encoder_feature_dim', default=50, type=int) parser.add_argument('--world_model_lr', default=1e-3, type=float)
parser.add_argument('--world_model_lr', default=6e-4, type=float)
parser.add_argument('--past_transition_lr', default=1e-3, type=float)
parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.001, type=float) parser.add_argument('--encoder_tau', default=0.001, type=float)
parser.add_argument('--encoder_stride', default=1, type=int)
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction']) parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
parser.add_argument('--decoder_lr', default=1e-3, type=float)
parser.add_argument('--decoder_update_freq', default=1, type=int)
parser.add_argument('--decoder_weight_lambda', default=0.0, type=float)
parser.add_argument('--num_layers', default=4, type=int) parser.add_argument('--num_layers', default=4, type=int)
parser.add_argument('--num_filters', default=32, type=int) parser.add_argument('--num_filters', default=32, type=int)
parser.add_argument('--aug', action='store_true') parser.add_argument('--aug', action='store_true')
# sac # sac
parser.add_argument('--discount', default=0.99, type=float) parser.add_argument('--discount', default=0.99, type=float)
parser.add_argument('--init_temperature', default=0.01, type=float)
parser.add_argument('--alpha_lr', default=1e-3, type=float)
parser.add_argument('--alpha_beta', default=0.9, type=float)
# misc # misc
parser.add_argument('--seed', default=1, type=int) parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--logging_freq', default=100, type=int) parser.add_argument('--logging_freq', default=100, type=int)
parser.add_argument('--saving_interval', default=1000, type=int) parser.add_argument('--saving_interval', default=2500, type=int)
parser.add_argument('--work_dir', default='.', type=str) parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true') parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_model', default=False, action='store_true') parser.add_argument('--save_model', default=False, action='store_true')
@ -221,19 +212,18 @@ class DPI:
# model parameters # model parameters
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_decoder.parameters()) + \ self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.prjoection_head.parameters()) + \
list(self.value_model.parameters()) + list(self.transition_model.parameters()) + \ list(self.transition_model.parameters()) + list(self.obs_decoder.parameters()) + \
list(self.prjoection_head.parameters()) list(self.reward_model.parameters())
self.past_transition_parameters = self.transition_model.parameters() self.past_transition_parameters = self.transition_model.parameters()
# optimizers # optimizers
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr) self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr)
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr) self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr)
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr) self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr)
self.past_transition_opt = torch.optim.Adam(self.past_transition_parameters, self.args.past_transition_lr)
# Create Modules # Create Modules
self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.reward_model, self.transition_model, self.prjoection_head] self.world_model_modules = [self.obs_encoder, self.prjoection_head, self.transition_model, self.obs_decoder, self.reward_model]
self.value_modules = [self.value_model] self.value_modules = [self.value_model]
self.actor_modules = [self.actor_model] self.actor_modules = [self.actor_model]
@ -252,8 +242,8 @@ class DPI:
all_rews = [] all_rews = []
#video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files) #video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files)
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'): for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
if args.save_video: #if args.save_video:
self.env.video.init(enabled=True) # self.env.video.init(enabled=True)
epi_reward = 0 epi_reward = 0
for i in range(self.args.episode_length): for i in range(self.args.episode_length):
@ -263,24 +253,24 @@ class DPI:
with torch.no_grad(): with torch.no_grad():
obs_torch = torch.unsqueeze(torch.tensor(obs).float(),0).to(device) obs_torch = torch.unsqueeze(torch.tensor(obs).float(),0).to(device)
state = self.obs_encoder(obs_torch)["distribution"].sample() state = self.obs_encoder(obs_torch)["distribution"].sample()
action = self.actor_model(state).cpu().detach().numpy().squeeze() action = self.actor_model(state).cpu().detach().numpy().squeeze()
next_obs, rew, done, _ = self.env.step(action) next_obs, rew, done, _ = self.env.step(action)
self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done) self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done)
if args.save_video: #if args.save_video:
self.env.video.record(self.env) # self.env.video.record(self.env)
if done or i == self.args.episode_length-1: if done: #or i == self.args.episode_length-1:
obs = self.env.reset() obs = self.env.reset()
done=False done=False
else: else:
obs = next_obs obs = next_obs
epi_reward += rew epi_reward += rew
all_rews.append(epi_reward) all_rews.append(epi_reward)
if args.save_video: #if args.save_video:
self.env.video.save('noisy/%d.mp4' % episode_count) # self.env.video.save('noisy/%d.mp4' % episode_count)
print("Collected {} random episodes".format(episode_count+1)) #print("Collected {} random episodes".format(episode_count+1))
return all_rews return all_rews
def train(self, step, total_steps): def train(self, step, total_steps):
@ -291,14 +281,16 @@ class DPI:
if step !=0: if step !=0:
encoder = self.obs_encoder encoder = self.obs_encoder
actor = self.actor_model actor = self.actor_model
#all_rews = self.collect_sequences(self.args.batch_size, random=True) all_rews = self.collect_sequences(10, random=False, actor_model=actor, encoder_model=encoder)
all_rews = self.collect_sequences(self.args.batch_size, random=False, actor_model=actor, encoder_model=encoder)
else: else:
all_rews = self.collect_sequences(self.args.batch_size, random=True) all_rews = self.collect_sequences(self.args.batch_size, random=True)
# Group by steps and sample random batch # Group by steps and sample random batch
random_indices = self.data_buffer.sample_random_idx(self.args.batch_size * ((step//self.args.collection_interval)+1)) # random indices for batch #random_indices = self.data_buffer.sample_random_idx(self.args.batch_size * ((step//self.args.collection_interval)+1)) # random indices for batch
#random_indices = np.arange(self.args.batch_size * ((step//self.args.collection_interval)),self.args.batch_size * ((step//self.args.collection_interval)+1)) #random_indices = self.data_buffer.sample_random_idx(self.data_buffer.steps//self.args.episode_length)
final_idx = self.data_buffer.group_steps(self.data_buffer, "observations").shape[1]
random_indices = self.data_buffer.sample_random_idx(final_idx, last=True)
last_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"observations", "cpu", random_indices=random_indices) last_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"observations", "cpu", random_indices=random_indices)
current_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", random_indices=random_indices) current_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", random_indices=random_indices)
next_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", offset=1, random_indices=random_indices) next_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", offset=1, random_indices=random_indices)
@ -318,8 +310,9 @@ class DPI:
# Train encoder # Train encoder
if step == 0: if step == 0:
step += 1 step += 1
for _ in range(self.args.collection_interval // self.args.episode_length+1): for _ in range(1):#(self.args.collection_interval // self.args.episode_length+1):
counter += 1 counter += 1
past_encoder_loss = 0
for i in range(self.args.episode_length-1): for i in range(self.args.episode_length-1):
if i > 0: if i > 0:
# Encode observations and next_observations # Encode observations and next_observations
@ -349,8 +342,15 @@ class DPI:
) )
# Calculate encoder loss # Calculate encoder loss
encoder_loss = self._past_encoder_loss(self.current_states_dict, encoder_loss = past_encoder_loss + self._past_encoder_loss(self.current_states_dict, predicted_current_state_dict)
predicted_current_state_dict) past_encoder_loss = encoder_loss.item()
# decoder loss
horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
nxt_obs = next_observations[i:i+horizon].view(-1,9,84,84)
next_states_encodings = self.get_features(nxt_obs)["sample"].view(horizon,self.args.batch_size, -1)
obs_dist = self.obs_decoder(next_states_encodings)
decoder_loss = -torch.mean(obs_dist.log_prob(next_observations[i:i+horizon][:,:,:3,:,:]))
# contrastive projection # contrastive projection
vec_anchor = predicted_current_state_dict["sample"] vec_anchor = predicted_current_state_dict["sample"]
@ -362,136 +362,137 @@ class DPI:
logits = self.contrastive_head(z_anchor, z_positive) logits = self.contrastive_head(z_anchor, z_positive)
labels = torch.arange(logits.shape[0]).long().to(device) labels = torch.arange(logits.shape[0]).long().to(device)
lb_loss = F.cross_entropy(logits, labels) lb_loss = F.cross_entropy(logits, labels)
# behaviour learning
with FreezeParameters(self.world_model_modules):
imagine_horizon = self.args.imagine_horizon #np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(),
self.next_action, self.history.detach(),
imagine_horizon)
# decoder loss
horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
obs_dist = self.obs_decoder(imagined_rollout["sample"][:horizon])
decoder_loss = -torch.mean(obs_dist.log_prob(next_observations[i:i+horizon][:,:,:3,:,:]))
# reward loss # reward loss
reward_dist = self.reward_model(self.current_states_dict["sample"]) reward_dist = self.reward_model(self.current_states_dict["sample"])
reward_loss = -torch.mean(reward_dist.log_prob(rewards[:-1])) reward_loss = -torch.mean(reward_dist.log_prob(rewards[:-1]))
# update models # world model loss
world_model_loss = encoder_loss + 100 * ub_loss + lb_loss + reward_loss + decoder_loss * 1e-2 world_model_loss = encoder_loss + ub_loss + lb_loss + reward_loss + decoder_loss
self.world_model_opt.zero_grad()
world_model_loss.backward()
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
self.world_model_opt.step()
# update momentum encoder
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
# update momentum projection head
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
# actor loss
with FreezeParameters(self.world_model_modules + self.value_modules):
imag_rew_dist = self.reward_model(imagined_rollout["sample"])
target_imag_val_dist = self.target_value_model(imagined_rollout["sample"])
imag_rews = imag_rew_dist.mean
target_imag_vals = target_imag_val_dist.mean
discounts = self.args.discount * torch.ones_like(imag_rews).detach()
self.target_returns = self._compute_lambda_return(imag_rews[:-1], # actor loss
target_imag_vals[:-1], with FreezeParameters(self.world_model_modules):
discounts[:-1] , imagine_horizon = self.args.imagine_horizon #np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
self.args.td_lambda, action = self.actor_model(self.current_states_dict["sample"])
target_imag_vals[-1]) imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(),
action, self.history.detach(),
imagine_horizon)
with FreezeParameters(self.world_model_modules + self.value_modules):
imag_rewards = self.reward_model(imagined_rollout["sample"]).mean
imag_values = self.value_model(imagined_rollout["sample"]).mean
discounts = self.args.discount * torch.ones_like(imag_rewards).detach()
self.returns = self._compute_lambda_return(imag_rewards[:-1],
imag_values[:-1],
discounts[:-1] ,
self.args.td_lambda,
imag_values[-1])
discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0) discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0)
self.discounts = torch.cumprod(discounts, 0).detach() self.discounts = torch.cumprod(discounts, 0).detach()
actor_loss = -torch.mean(self.discounts * self.target_returns) actor_loss = -torch.mean(self.discounts * self.returns)
# update actor
self.actor_opt.zero_grad()
actor_loss.backward()
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
self.actor_opt.step()
# value loss # value loss
with torch.no_grad(): with torch.no_grad():
value_feat = imagined_rollout["sample"][:-1].detach() value_feat = imagined_rollout["sample"][:-1].detach()
value_targ = self.target_returns.detach() value_targ = self.returns.detach()
value_dist = self.value_model(value_feat) value_dist = self.value_model(value_feat)
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1)) value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
# update value # update models
self.world_model_opt.zero_grad()
self.actor_opt.zero_grad()
self.value_opt.zero_grad() self.value_opt.zero_grad()
world_model_loss.backward()
actor_loss.backward()
value_loss.backward() value_loss.backward()
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm) nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm)
self.world_model_opt.step()
self.actor_opt.step()
self.value_opt.step() self.value_opt.step()
# update momentum encoder and projection head
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
# update target value # update target value
if step % self.args.value_target_update_freq == 0: #if step % self.args.value_target_update_freq == 0:
self.target_value_model = copy.deepcopy(self.value_model) # self.target_value_model = copy.deepcopy(self.value_model)
# counter for reward # counter for reward
count = np.arange((counter-1) * (self.args.batch_size), (counter) * (self.args.batch_size)) count = np.arange((counter-1) * (self.args.batch_size), (counter) * (self.args.batch_size))
if step % self.args.logging_freq: if step % self.args.logging_freq:
writer.add_scalar('World Loss/World Loss', world_model_loss.detach().item(), step) writer.add_scalar('World Loss/World Loss', world_model_loss.detach().item(), self.data_buffer.steps)
writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss.detach().item(), step) writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss.detach().item(), self.data_buffer.steps)
writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, step) writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, self.data_buffer.steps)
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), step) writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), self.data_buffer.steps)
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step) writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), self.data_buffer.steps)
writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss.detach().item(), step) writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss.detach().item(), self.data_buffer.steps)
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), step) writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), self.data_buffer.steps)
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss.detach().item(), step) writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss.detach().item(), self.data_buffer.steps)
step += 1 step += 1
if step>total_steps:
print("Training finished")
break
# save model
if step % self.args.saving_interval == 0:
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.save_models(path)
#torch.cuda.empty_cache() # memory leak issues
# save model
#if step % 500 == 0:#self.args.saving_interval == 0:
# print("Saving model")
# path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
# self.save_models(path)
for j in range(len(all_rews)): for j in range(len(all_rews)):
writer.add_scalar('Rewards/Rewards', all_rews[j], count[j]) writer.add_scalar('Rewards/Rewards', all_rews[j], count[j])
#print(self.data_buffer.steps , ((self.args.episode_length-1) * self.args.batch_size * 5))
if self.data_buffer.steps % 5100 == 0 and self.data_buffer.steps!=0: #self.args.evaluation_interval == 0:
print("Saving model")
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.save_models(path)
self.evaluate()
def evaluate(self, env, eval_episodes, render=False): def evaluate(self, eval_episodes=10):
path = path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.restore_checkpoint(path)
episode_rew = np.zeros((eval_episodes)) obs = self.env.reset()
done = False
video_images = [[] for _ in range(eval_episodes)] #video = VideoRecorder(self.video_dir, resource_files=self.args.resource_files)
if self.args.save_video:
for i in range(eval_episodes): self.env.video.init(enabled=True)
obs = env.reset() episodic_rewards = []
for episode in range(eval_episodes):
rewards = 0
done = False done = False
prev_state = self.rssm.init_state(1, self.device)
prev_action = torch.zeros(1, self.action_size).to(self.device)
while not done: while not done:
with torch.no_grad(): with torch.no_grad():
posterior, action = self.act_with_world_model(obs, prev_state, prev_action) obs_torch = torch.unsqueeze(torch.tensor(obs).float(),0).to(device)
action = action[0].cpu().numpy() state = self.obs_encoder(obs_torch)["distribution"].sample()
next_obs, rew, done, _ = env.step(action) action = self.actor_model(state).cpu().detach().numpy().squeeze()
prev_state = posterior
prev_action = torch.tensor(action, dtype=torch.float32).to(self.device).unsqueeze(0) next_obs, rew, done, _ = self.env.step(action)
rewards += rew
episode_rew[i] += rew if self.args.save_video:
self.env.video.record(self.env)
if render: self.env.video.save('/home/vedant/Curiosity/Curiosity/DPI/log/video/learned_model.mp4')
video_images[i].append(obs['image'].transpose(1,2,0).copy())
obs = next_obs obs = next_obs
return episode_rew, np.array(video_images[:self.args.max_videos_to_save]) obs = self.env.reset()
episodic_rewards.append(rewards)
print("Episodic rewards: ", episodic_rewards)
print("Average episodic reward: ", np.mean(episodic_rewards))
def _upper_bound_minimization(self, last_states, current_states, negative_current_states, predicted_current_states): def _upper_bound_minimization(self, last_states, current_states, negative_current_states, predicted_current_states):
club_sample = CLUBSample(last_states, club_sample = CLUBSample(last_states,
@ -510,15 +511,16 @@ class DPI:
predicted_curr_states_dist = predicted_curr_states_dict["distribution"] predicted_curr_states_dist = predicted_curr_states_dict["distribution"]
# KL divergence loss # KL divergence loss
loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean() loss = torch.mean(torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist))
return loss return loss
def get_features(self, x, momentum=False): def get_features(self, x, momentum=False):
if self.args.aug: if self.args.aug:
x = T.RandomCrop((80, 80))(x) # (None,80,80,4) crop_transform = T.RandomCrop(size=80)
x = T.functional.pad(x, (4, 4, 4, 4), "symmetric") # (None,88,88,4) cropped_x = torch.stack([crop_transform(x[i]) for i in range(x.size(0))])
x = T.RandomCrop((84, 84))(x) # (None,84,84,4) padding = (2, 2, 2, 2)
x = F.pad(cropped_x, padding)
with torch.no_grad(): with torch.no_grad():
if momentum: if momentum:
@ -550,6 +552,17 @@ class DPI:
'actor_optimizer': self.actor_opt.state_dict(), 'actor_optimizer': self.actor_opt.state_dict(),
'value_optimizer': self.value_opt.state_dict(), 'value_optimizer': self.value_opt.state_dict(),
'world_model_optimizer': self.world_model_opt.state_dict(),}, save_path) 'world_model_optimizer': self.world_model_opt.state_dict(),}, save_path)
def restore_checkpoint(self, ckpt_path):
checkpoint = torch.load(ckpt_path)
self.transition_model.load_state_dict(checkpoint['rssm'])
self.actor_model.load_state_dict(checkpoint['actor'])
self.reward_model.load_state_dict(checkpoint['reward_model'])
self.obs_encoder.load_state_dict(checkpoint['obs_encoder'])
self.obs_decoder.load_state_dict(checkpoint['obs_decoder'])
self.world_model_opt.load_state_dict(checkpoint['world_model_optimizer'])
self.actor_opt.load_state_dict(checkpoint['actor_optimizer'])
self.value_opt.load_state_dict(checkpoint['value_optimizer'])
if __name__ == '__main__': if __name__ == '__main__':
args = parse_args() args = parse_args()
@ -560,6 +573,7 @@ if __name__ == '__main__':
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
step = 0 step = 0
total_steps = 10000 total_steps = 200000
dpi = DPI(args) dpi = DPI(args)
dpi.train(step,total_steps) dpi.train(step,total_steps)
dpi.evaluate()