52 lines
2.1 KiB
Python
52 lines
2.1 KiB
Python
|
import torch
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
class ReplayBuffer:
|
||
|
|
||
|
def __init__(self, size, obs_shape, action_size, seq_len, batch_size):
|
||
|
self.size = size
|
||
|
self.obs_shape = obs_shape
|
||
|
self.action_size = action_size
|
||
|
self.seq_len = seq_len
|
||
|
self.batch_size = batch_size
|
||
|
self.idx = 0
|
||
|
self.full = False
|
||
|
self.observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||
|
self.next_observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||
|
self.actions = np.empty((size, action_size), dtype=np.float32)
|
||
|
self.rewards = np.empty((size,), dtype=np.float32)
|
||
|
self.terminals = np.empty((size,), dtype=np.float32)
|
||
|
self.steps, self.episodes = 0, 0
|
||
|
|
||
|
def add(self, obs, ac, next_obs, rew, done):
|
||
|
self.observations[self.idx] = obs
|
||
|
self.next_observations[self.idx] = next_obs
|
||
|
self.actions[self.idx] = ac
|
||
|
self.rewards[self.idx] = rew
|
||
|
self.terminals[self.idx] = done
|
||
|
self.idx = (self.idx + 1) % self.size
|
||
|
self.full = self.full or self.idx == 0
|
||
|
self.steps += 1
|
||
|
self.episodes = self.episodes + (1 if done else 0)
|
||
|
|
||
|
def _sample_idx(self, L):
|
||
|
valid_idx = False
|
||
|
while not valid_idx:
|
||
|
idx = np.random.randint(0, self.size if self.full else self.idx - L)
|
||
|
idxs = np.arange(idx, idx + L) % self.size
|
||
|
valid_idx = not self.idx in idxs[1:]
|
||
|
return idxs
|
||
|
|
||
|
def _retrieve_batch(self, idxs, n, L):
|
||
|
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
|
||
|
observations = self.observations[vec_idxs]
|
||
|
next_observations = self.next_observations[vec_idxs]
|
||
|
return observations.reshape(L, n, *observations.shape[1:]),self.actions[vec_idxs].reshape(L, n, -1), next_observations.reshape(L, n, *next_observations.shape[1:]), self.rewards[vec_idxs].reshape(L, n), self.terminals[vec_idxs].reshape(L, n)
|
||
|
|
||
|
def sample(self):
|
||
|
n = self.batch_size
|
||
|
l = self.seq_len
|
||
|
obs,acs,nxt_obs,rews,terms= self._retrieve_batch(np.asarray([self._sample_idx(l) for _ in range(n)]), n, l)
|
||
|
return obs,acs,nxt_obs,rews,terms
|