Add files via upload

This commit is contained in:
Linus NEP 2023-05-08 09:54:00 +02:00 committed by GitHub
parent 5b9a69b32c
commit 83b06c4053
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 544 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,272 @@
"""
These configurations is based on Austin Owens implementation: https://github.com/AustinOwens/robodog/blob/main/odrive/configs/odrive_hoverboard_config.py
It was based on the hoverboard tutorial found on the Odrive Robotics website at: https://docs.odriverobotics.com/v/0.5.4/hoverboard.html
"""
import sys
import time
import math
import odrive
from odrive.enums import *
import fibre.libfibre
from fibre import Logger, Event
from odrive.utils import OperationAbortedException
class MotorConfig:
"""
Class for configuring an Odrive axis for a Hoverboard motor.
Only works with one Odrive at a time.
"""
# Hoverboard Kv
HOVERBOARD_KV = 16.0
# Min/Max phase inductance of motor
MIN_PHASE_INDUCTANCE = 0
MAX_PHASE_INDUCTANCE = 0.001
# Min/Max phase resistance of motor
MIN_PHASE_RESISTANCE = 0
MAX_PHASE_RESISTANCE = 0.5
# Tolerance for encoder offset float
ENCODER_OFFSET_FLOAT_TOLERANCE = 0.05
def __init__(self, axis_num):
"""
Initalizes MotorConfig class by finding odrive, erase its
configuration, and grabbing specified axis object.
:param axis_num: Which channel/motor on the odrive your referring to.
:type axis_num: int (0 or 1)
"""
self.axis_num = axis_num
# Connect to Odrive
print("Looking for ODrive...")
self._find_odrive()
print("Found ODrive.")
def _find_odrive(self):
# connect to Odrive
self.odrv = odrive.find_any()
self.odrv_axis = getattr(self.odrv, "axis{}".format(self.axis_num))
def configure(self):
"""
Configures the odrive device for a hoverboard motor.
"""
# Erase pre-exsisting configuration
print("Erasing pre-exsisting configuration...")
try:
self.odrv.erase_configuration()
except ChannelBrokenException:
pass
self._find_odrive()
# Standard 6.5 inch hoverboard hub motors have 30 permanent magnet
# poles, and thus 15 pole pairs
self.odrv_axis.motor.config.pole_pairs = 15
# Hoverboard hub motors are quite high resistance compared to the hobby
# aircraft motors, so we want to use a bit higher voltage for the motor
# calibration, and set up the current sense gain to be more sensitive.
# The motors are also fairly high inductance, so we need to reduce the
# bandwidth of the current controller from the default to keep it
# stable.
self.odrv_axis.motor.config.resistance_calib_max_voltage = 4
self.odrv_axis.motor.config.requested_current_range = 25
self.odrv_axis.motor.config.current_control_bandwidth = 100
# Estimated KV but should be measured using the "drill test", which can
# be found here: # https://discourse.odriverobotics.com/t/project-hoverarm/441
self.odrv_axis.motor.config.torque_constant = 8.27 / self.HOVERBOARD_KV
# Hoverboard motors contain hall effect sensors instead of incremental
# encorders
self.odrv_axis.encoder.config.mode = ENCODER_MODE_HALL
# The hall feedback has 6 states for every pole pair in the motor. Since
# we have 15 pole pairs, we set the cpr to 15*6 = 90.
self.odrv_axis.encoder.config.cpr = 90
# Since hall sensors are low resolution feedback, we also bump up the
#offset calibration displacement to get better calibration accuracy.
self.odrv_axis.encoder.config.calib_scan_distance = 150
# Since the hall feedback only has 90 counts per revolution, we want to
# reduce the velocity tracking bandwidth to get smoother velocity
# estimates. We can also set these fairly modest gains that will be a
# bit sloppy but shouldnt shake your rig apart if its built poorly.
# Make sure to tune the gains up when you have everything else working
# to a stiffness that is applicable to your application.
self.odrv_axis.encoder.config.bandwidth = 100
self.odrv_axis.controller.config.pos_gain = 1
self.odrv_axis.controller.config.vel_gain = 0.02 * self.odrv_axis.motor.config.torque_constant * self.odrv_axis.encoder.config.cpr
self.odrv_axis.controller.config.vel_integrator_gain = 0.1 * self.odrv_axis.motor.config.torque_constant * self.odrv_axis.encoder.config.cpr
self.odrv_axis.controller.config.vel_limit = 10
# Set in position control mode so we can control the position of the wheel
self.odrv_axis.controller.config.control_mode = CONTROL_MODE_POSITION_CONTROL
# In the next step we are going to start powering the motor and so we
# want to make sure that some of the above settings that require a
# reboot are applied first.
print("Saving manual configuration and rebooting...")
self.odrv.save_configuration()
print("Manual configuration saved.")
try:
self.odrv.reboot()
except ChannelBrokenException:
pass
self._find_odrive()
input("Make sure the motor is free to move, then press enter...")
print("Calibrating Odrive for hoverboard motor (you should hear a " "beep)...")
self.odrv_axis.requested_state = AXIS_STATE_MOTOR_CALIBRATION
# Wait for calibration to take place
time.sleep(10)
if self.odrv_axis.motor.error != 0:
print("Error: Odrive reported an error of {} while in the state "
"AXIS_STATE_MOTOR_CALIBRATION. Printing out Odrive motor data for "
"debug:\n{}".format(self.odrv_axis.motor.error,
self.odrv_axis.motor))
sys.exit(1)
if self.odrv_axis.motor.config.phase_inductance <= self.MIN_PHASE_INDUCTANCE or \
self.odrv_axis.motor.config.phase_inductance >= self.MAX_PHASE_INDUCTANCE:
print("Error: After odrive motor calibration, the phase inductance "
"is at {}, which is outside of the expected range. Either widen the "
"boundaries of MIN_PHASE_INDUCTANCE and MAX_PHASE_INDUCTANCE (which "
"is between {} and {} respectively) or debug/fix your setup. Printing "
"out Odrive motor data for debug:\n{}".format(self.odrv_axis.motor.config.phase_inductance,
self.MIN_PHASE_INDUCTANCE,
self.MAX_PHASE_INDUCTANCE,
self.odrv_axis.motor))
sys.exit(1)
if self.odrv_axis.motor.config.phase_resistance <= self.MIN_PHASE_RESISTANCE or \
self.odrv_axis.motor.config.phase_resistance >= self.MAX_PHASE_RESISTANCE:
print("Error: After odrive motor calibration, the phase resistance "
"is at {}, which is outside of the expected range. Either raise the "
"MAX_PHASE_RESISTANCE (which is between {} and {} respectively) or "
"debug/fix your setup. Printing out Odrive motor data for "
"debug:\n{}".format(self.odrv_axis.motor.config.phase_resistance,
self.MIN_PHASE_RESISTANCE,
self.MAX_PHASE_RESISTANCE,
self.odrv_axis.motor))
sys.exit(1)
# If all looks good, then lets tell ODrive that saving this calibration
# to persistent memory is OK
self.odrv_axis.motor.config.pre_calibrated = True
# Check the alignment between the motor and the hall sensor. Because of
# this step you are allowed to plug the motor phases in random order and
# also the hall signals can be random. Just dont change it after
# calibration.
print("Calibrating Odrive for encoder...")
self.odrv_axis.requested_state = AXIS_STATE_ENCODER_OFFSET_CALIBRATION
# Wait for calibration to take place
time.sleep(30)
if self.odrv_axis.encoder.error != 0:
print("Error: Odrive reported an error of {} while in the state "
"AXIS_STATE_ENCODER_OFFSET_CALIBRATION. Printing out Odrive encoder "
"data for debug:\n{}".format(self.odrv_axis.encoder.error,
self.odrv_axis.encoder))
sys.exit(1)
# If offset_float isn't 0.5 within some tolerance, or its not 1.5 within
# some tolerance, raise an error
if not ((self.odrv_axis.encoder.config.offset_float > 0.5 - self.ENCODER_OFFSET_FLOAT_TOLERANCE and \
self.odrv_axis.encoder.config.offset_float < 0.5 + self.ENCODER_OFFSET_FLOAT_TOLERANCE) or \
(self.odrv_axis.encoder.config.offset_float > 1.5 - self.ENCODER_OFFSET_FLOAT_TOLERANCE and \
self.odrv_axis.encoder.config.offset_float < 1.5 + self.ENCODER_OFFSET_FLOAT_TOLERANCE)):
print("Error: After odrive encoder calibration, the 'offset_float' "
"is at {}, which is outside of the expected range. 'offset_float' "
"should be close to 0.5 or 1.5 with a tolerance of {}. Either "
"increase the tolerance or debug/fix your setup. Printing out "
"Odrive encoder data for debug:\n{}".format(self.odrv_axis.encoder.config.offset_float,
self.ENCODER_OFFSET_FLOAT_TOLERANCE,
self.odrv_axis.encoder))
sys.exit(1)
# If all looks good, then lets tell ODrive that saving this calibration
# to persistent memory is OK
self.odrv_axis.encoder.config.pre_calibrated = True
print("Saving calibration configuration and rebooting...")
self.odrv.save_configuration()
print("Calibration configuration saved.")
try:
self.odrv.reboot()
except ChannelBrokenException:
pass
self._find_odrive()
print("Odrive configuration finished.")
def mode_idle(self):
"""
Puts the motor in idle (i.e. can move freely).
"""
self.odrv_axis.requested_state = AXIS_STATE_IDLE
def mode_close_loop_control(self):
"""
Puts the motor in closed loop control.
"""
self.odrv_axis.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL
def move_input_pos(self, angle):
"""
Puts the motor at a certain angle.
:param angle: Angle you want the motor to move.
:type angle: int or float
"""
self.odrv_axis.controller.input_pos = angle/360.0
if __name__ == "__main__":
hb_motor_config = MotorConfig(axis_num = 0)
hb_motor_config.configure()
print("CONDUCTING MOTOR TEST")
print("Placing motor in close loop control. If you move motor, motor will "
"resist you.")
hb_motor_config.mode_close_loop_control()
# Go from 0 to 360 degrees in increments of 30 degrees
for angle in range(0, 390, 30):
print("Setting motor to {} degrees.".format(angle))
hb_motor_config.move_input_pos(angle)
time.sleep(5)
print("Placing motor in idle. If you move motor, motor will "
"move freely")
hb_motor_config.mode_idle()

Binary file not shown.

View File

@ -0,0 +1,272 @@
"""
These configurations is based on Austin Owens implementation: https://github.com/AustinOwens/robodog/blob/main/odrive/configs/odrive_hoverboard_config.py
It was based on the hoverboard tutorial found on the Odrive Robotics website at: https://docs.odriverobotics.com/v/0.5.4/hoverboard.html
"""
import sys
import time
import math
import odrive
from odrive.enums import *
import fibre.libfibre
from fibre import Logger, Event
from odrive.utils import OperationAbortedException
class MotorConfig:
"""
Class for configuring an Odrive axis for a Hoverboard motor.
Only works with one Odrive at a time.
"""
# Hoverboard Kv
HOVERBOARD_KV = 16.0
# Min/Max phase inductance of motor
MIN_PHASE_INDUCTANCE = 0
MAX_PHASE_INDUCTANCE = 0.001
# Min/Max phase resistance of motor
MIN_PHASE_RESISTANCE = 0
MAX_PHASE_RESISTANCE = 0.5
# Tolerance for encoder offset float
ENCODER_OFFSET_FLOAT_TOLERANCE = 0.05
def __init__(self, axis_num):
"""
Initalizes MotorConfig class by finding odrive, erase its
configuration, and grabbing specified axis object.
:param axis_num: Which channel/motor on the odrive your referring to.
:type axis_num: int (0 or 1)
"""
self.axis_num = axis_num
# Connect to Odrive
print("Looking for ODrive...")
self._find_odrive()
print("Found ODrive.")
def _find_odrive(self):
# connect to Odrive
self.odrv = odrive.find_any()
self.odrv_axis = getattr(self.odrv, "axis{}".format(self.axis_num))
def configure(self):
"""
Configures the odrive device for a hoverboard motor.
"""
# Erase pre-exsisting configuration
print("Erasing pre-exsisting configuration...")
try:
self.odrv.erase_configuration()
except ChannelBrokenException:
pass
self._find_odrive()
# Standard 6.5 inch hoverboard hub motors have 30 permanent magnet
# poles, and thus 15 pole pairs
self.odrv_axis.motor.config.pole_pairs = 15
# Hoverboard hub motors are quite high resistance compared to the hobby
# aircraft motors, so we want to use a bit higher voltage for the motor
# calibration, and set up the current sense gain to be more sensitive.
# The motors are also fairly high inductance, so we need to reduce the
# bandwidth of the current controller from the default to keep it
# stable.
self.odrv_axis.motor.config.resistance_calib_max_voltage = 4
self.odrv_axis.motor.config.requested_current_range = 25
self.odrv_axis.motor.config.current_control_bandwidth = 100
# Estimated KV but should be measured using the "drill test", which can
# be found here: # https://discourse.odriverobotics.com/t/project-hoverarm/441
self.odrv_axis.motor.config.torque_constant = 8.27 / self.HOVERBOARD_KV
# Hoverboard motors contain hall effect sensors instead of incremental
# encorders
self.odrv_axis.encoder.config.mode = ENCODER_MODE_HALL
# The hall feedback has 6 states for every pole pair in the motor. Since
# we have 15 pole pairs, we set the cpr to 15*6 = 90.
self.odrv_axis.encoder.config.cpr = 90
# Since hall sensors are low resolution feedback, we also bump up the
#offset calibration displacement to get better calibration accuracy.
self.odrv_axis.encoder.config.calib_scan_distance = 150
# Since the hall feedback only has 90 counts per revolution, we want to
# reduce the velocity tracking bandwidth to get smoother velocity
# estimates. We can also set these fairly modest gains that will be a
# bit sloppy but shouldnt shake your rig apart if its built poorly.
# Make sure to tune the gains up when you have everything else working
# to a stiffness that is applicable to your application.
self.odrv_axis.encoder.config.bandwidth = 100
self.odrv_axis.controller.config.pos_gain = 1
self.odrv_axis.controller.config.vel_gain = 0.02 * self.odrv_axis.motor.config.torque_constant * self.odrv_axis.encoder.config.cpr
self.odrv_axis.controller.config.vel_integrator_gain = 0.1 * self.odrv_axis.motor.config.torque_constant * self.odrv_axis.encoder.config.cpr
self.odrv_axis.controller.config.vel_limit = 10
# Set in position control mode so we can control the position of the wheel
self.odrv_axis.controller.config.control_mode = CONTROL_MODE_POSITION_CONTROL
# In the next step we are going to start powering the motor and so we
# want to make sure that some of the above settings that require a
# reboot are applied first.
print("Saving manual configuration and rebooting...")
self.odrv.save_configuration()
print("Manual configuration saved.")
try:
self.odrv.reboot()
except ChannelBrokenException:
pass
self._find_odrive()
input("Make sure the motor is free to move, then press enter...")
print("Calibrating Odrive for hoverboard motor (you should hear a " "beep)...")
self.odrv_axis.requested_state = AXIS_STATE_MOTOR_CALIBRATION
# Wait for calibration to take place
time.sleep(10)
if self.odrv_axis.motor.error != 0:
print("Error: Odrive reported an error of {} while in the state "
"AXIS_STATE_MOTOR_CALIBRATION. Printing out Odrive motor data for "
"debug:\n{}".format(self.odrv_axis.motor.error,
self.odrv_axis.motor))
sys.exit(1)
if self.odrv_axis.motor.config.phase_inductance <= self.MIN_PHASE_INDUCTANCE or \
self.odrv_axis.motor.config.phase_inductance >= self.MAX_PHASE_INDUCTANCE:
print("Error: After odrive motor calibration, the phase inductance "
"is at {}, which is outside of the expected range. Either widen the "
"boundaries of MIN_PHASE_INDUCTANCE and MAX_PHASE_INDUCTANCE (which "
"is between {} and {} respectively) or debug/fix your setup. Printing "
"out Odrive motor data for debug:\n{}".format(self.odrv_axis.motor.config.phase_inductance,
self.MIN_PHASE_INDUCTANCE,
self.MAX_PHASE_INDUCTANCE,
self.odrv_axis.motor))
sys.exit(1)
if self.odrv_axis.motor.config.phase_resistance <= self.MIN_PHASE_RESISTANCE or \
self.odrv_axis.motor.config.phase_resistance >= self.MAX_PHASE_RESISTANCE:
print("Error: After odrive motor calibration, the phase resistance "
"is at {}, which is outside of the expected range. Either raise the "
"MAX_PHASE_RESISTANCE (which is between {} and {} respectively) or "
"debug/fix your setup. Printing out Odrive motor data for "
"debug:\n{}".format(self.odrv_axis.motor.config.phase_resistance,
self.MIN_PHASE_RESISTANCE,
self.MAX_PHASE_RESISTANCE,
self.odrv_axis.motor))
sys.exit(1)
# If all looks good, then lets tell ODrive that saving this calibration
# to persistent memory is OK
self.odrv_axis.motor.config.pre_calibrated = True
# Check the alignment between the motor and the hall sensor. Because of
# this step you are allowed to plug the motor phases in random order and
# also the hall signals can be random. Just dont change it after
# calibration.
print("Calibrating Odrive for encoder...")
self.odrv_axis.requested_state = AXIS_STATE_ENCODER_OFFSET_CALIBRATION
# Wait for calibration to take place
time.sleep(30)
if self.odrv_axis.encoder.error != 0:
print("Error: Odrive reported an error of {} while in the state "
"AXIS_STATE_ENCODER_OFFSET_CALIBRATION. Printing out Odrive encoder "
"data for debug:\n{}".format(self.odrv_axis.encoder.error,
self.odrv_axis.encoder))
sys.exit(1)
# If offset_float isn't 0.5 within some tolerance, or its not 1.5 within
# some tolerance, raise an error
if not ((self.odrv_axis.encoder.config.offset_float > 0.5 - self.ENCODER_OFFSET_FLOAT_TOLERANCE and \
self.odrv_axis.encoder.config.offset_float < 0.5 + self.ENCODER_OFFSET_FLOAT_TOLERANCE) or \
(self.odrv_axis.encoder.config.offset_float > 1.5 - self.ENCODER_OFFSET_FLOAT_TOLERANCE and \
self.odrv_axis.encoder.config.offset_float < 1.5 + self.ENCODER_OFFSET_FLOAT_TOLERANCE)):
print("Error: After odrive encoder calibration, the 'offset_float' "
"is at {}, which is outside of the expected range. 'offset_float' "
"should be close to 0.5 or 1.5 with a tolerance of {}. Either "
"increase the tolerance or debug/fix your setup. Printing out "
"Odrive encoder data for debug:\n{}".format(self.odrv_axis.encoder.config.offset_float,
self.ENCODER_OFFSET_FLOAT_TOLERANCE,
self.odrv_axis.encoder))
sys.exit(1)
# If all looks good, then lets tell ODrive that saving this calibration
# to persistent memory is OK
self.odrv_axis.encoder.config.pre_calibrated = True
print("Saving calibration configuration and rebooting...")
self.odrv.save_configuration()
print("Calibration configuration saved.")
try:
self.odrv.reboot()
except ChannelBrokenException:
pass
self._find_odrive()
print("Odrive configuration finished.")
def mode_idle(self):
"""
Puts the motor in idle (i.e. can move freely).
"""
self.odrv_axis.requested_state = AXIS_STATE_IDLE
def mode_close_loop_control(self):
"""
Puts the motor in closed loop control.
"""
self.odrv_axis.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL
def move_input_pos(self, angle):
"""
Puts the motor at a certain angle.
:param angle: Angle you want the motor to move.
:type angle: int or float
"""
self.odrv_axis.controller.input_pos = angle/360.0
if __name__ == "__main__":
hb_motor_config = MotorConfig(axis_num = 0)
hb_motor_config.configure()
print("CONDUCTING MOTOR TEST")
print("Placing motor in close loop control. If you move motor, motor will "
"resist you.")
hb_motor_config.mode_close_loop_control()
# Go from 0 to 360 degrees in increments of 30 degrees
for angle in range(0, 390, 30):
print("Setting motor to {} degrees.".format(angle))
hb_motor_config.move_input_pos(angle)
time.sleep(5)
print("Placing motor in idle. If you move motor, motor will "
"move freely")
hb_motor_config.mode_idle()