{ "cells": [ { "cell_type": "markdown", "source": [ "### Solution for Assignment 5 of the course \"Introduction to Machine Learning\" at the University of Leoben.\n", "##### Author: Fotios Lygerakis\n", "##### Semester: SS 2022/2023" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "# Perceptron Algorithm for Classification of Iris Dataset" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 1, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(150, 4)\n", "(150,)\n" ] } ], "source": [ "# load the iris dataset\n", "from sklearn.datasets import load_iris\n", "from sklearn.metrics import accuracy_score\n", "import numpy as np\n", "\n", "iris = load_iris()\n", "X = iris.data\n", "y = iris.target\n", "print(X.shape)\n", "print(y.shape)" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Preprocess the data" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 2, "outputs": [], "source": [ "# Preprocess the data\n", "from sklearn.model_selection import train_test_split\n", "\n", "# split the scaled data into train and test sets\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Define the perceptron algorithm" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 3, "outputs": [], "source": [ "# Define the perceptron algorithm\n", "class MultiClassPerceptron:\n", " def __init__(self, input_dim, output_dim, lr=0.01, epochs=1000):\n", " self.W = np.random.randn(input_dim, output_dim)\n", " self.b = np.zeros((1, output_dim))\n", " self.lr = lr\n", " self.epochs = epochs\n", "\n", " def forward(self, X):\n", " self.z = np.dot(X, self.W) + self.b\n", " self.y_hat = np.exp(self.z) / np.sum(np.exp(self.z), axis=1, keepdims=True)\n", "\n", " def backward(self, X, y):\n", " m = X.shape[0] # number of samples\n", " # Calculate the gradients\n", " grad_z = self.y_hat # shape (m, C)\n", " # Subtract 1 from the predicted class for each sample\n", " grad_z[range(m), y] -= 1 # shape (m, C)\n", " # Calculate the gradients with respect to the parameters\n", " grad_W = np.dot(X.T, grad_z) # shape (n, C)\n", " # Reshape the gradients into a 2-D array\n", " grad_b = np.sum(grad_z, axis=0, keepdims=True) # shape (1, C)\n", " # Update the parameters\n", " self.W -= self.lr * grad_W # shape (n, C)\n", " self.b -= self.lr * grad_b # shape (1, C)\n", "\n", " def fit(self, X, y):\n", " for epoch in range(self.epochs):\n", " self.forward(X)\n", " self.backward(X, y)\n", "\n", " def predict(self, X):\n", " self.forward(X)\n", " return np.argmax(self.y_hat, axis=1)" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Train the model" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 4, "outputs": [], "source": [ "# Train the model\n", "p = MultiClassPerceptron(input_dim=X_train.shape[1], output_dim=3, lr=0.01, epochs=1000)\n", "p.fit(X_train, y_train)\n", "predictions_train = p.predict(X_train)\n", "predictions = p.predict(X_test)" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Evaluate the model" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 5, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Perceptron classification train accuracy 0.975\n", "Perceptron classification accuracy 1.0\n" ] } ], "source": [ "# evaluate train accuracy\n", "print(\"Perceptron classification train accuracy\", accuracy_score(y_train, predictions_train))\n", "print(\"Perceptron classification accuracy\", accuracy_score(y_test, predictions))" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Non-linear feature transformation on the concrete compressive strength dataset" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 6, "outputs": [], "source": [ "def polynomial_features(X, degree):\n", " \"\"\"\n", " Creates a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree.\n", " For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2].\n", " Parameters\n", " ----------\n", " X : array-like, shape (n_samples, n_features)\n", " The input samples.\n", " degree : int\n", " The degree of the polynomial features.\n", " Returns\n", " -------\n", " X_new : array-like, shape (n_samples, 1 + n_features + n_features*(n_features+1)/2)\n", " The polynomial features with degree `degree`.\n", " \"\"\"\n", " n_samples, n_features = np.shape(X)\n", " new_features = np.ones(shape=(n_samples, 1))\n", "\n", " for i in range(n_features):\n", " for j in range(1, degree+1):\n", " # create a new column for each feature, with values raised to the power of j\n", " new_col = np.power(X[:, i], j) # shape (n_samples, 1)\n", " # reshape the new column to a 2-D array\n", " new_col = new_col.reshape(n_samples, 1) # shape (n_samples, 1)\n", " # append the new column to the new_features array\n", " new_features = np.hstack((new_features, new_col)) # shape (n_samples, j+1)\n", "\n", " return new_features" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 7, "outputs": [], "source": [ "# Non-linear feature transformation\n", "import pandas as pd\n", "from sklearn.preprocessing import PolynomialFeatures\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import mean_squared_error, r2_score\n", "\n", "# load the concrete compressive strength dataset\n", "df = pd.read_excel('Concrete_Data.xls')\n", "\n", "# split the data into train and test sets\n", "X = df.drop(['Concrete compressive strength(MPa, megapascals) '], axis=1)\n", "y = df['Concrete compressive strength(MPa, megapascals) ']\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", "\n", "# transform the features into second degree polynomial features\n", "poly = PolynomialFeatures(degree=2)\n", "X_train_poly = poly.fit_transform(X_train)\n", "X_test_poly = poly.transform(X_test)\n", "\n", "X_train_poly_custom = polynomial_features(X_train.values, degree=2)\n", "X_test_poly_custom = polynomial_features(X_test.values, degree=2)\n" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Train the linear regression model" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 8, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean squared error (train poly custom): 64.55\n", "Mean squared error (test poly custom): 58.28\n", "Mean squared error (train): 110.66\n", "Mean squared error (test): 95.98\n", "R^2 (train poly custom): 0.77\n", "R^2 (test poly custom): 0.77\n", "R^2 (train): 0.61\n", "R^2 (test): 0.63\n" ] } ], "source": [ "# Train the model\n", "lr_poly_custom = LinearRegression()\n", "lr = LinearRegression()\n", "# fit the model\n", "lr_poly_custom.fit(X_train_poly_custom, y_train)\n", "lr.fit(X_train, y_train)\n", "# predict values from the polynomial transformed features\n", "predictions_poly_custom_train = lr_poly_custom.predict(X_train_poly_custom)\n", "predictions_poly_custom = lr_poly_custom.predict(X_test_poly_custom)\n", "# predict values from the original features\n", "predictions_train = lr.predict(X_train)\n", "predictions = lr.predict(X_test)\n", "\n", "# mean squared error\n", "print(\"Mean squared error (train poly custom): {:.2f}\".format(mean_squared_error(y_train, predictions_poly_custom_train)))\n", "print(\"Mean squared error (test poly custom): {:.2f}\".format(mean_squared_error(y_test, predictions_poly_custom)))\n", "print(\"Mean squared error (train): {:.2f}\".format(mean_squared_error(y_train, predictions_train)))\n", "print(\"Mean squared error (test): {:.2f}\".format(mean_squared_error(y_test, predictions)))\n", "\n", "# coefficient of determination (R^2)\n", "print(\"R^2 (train poly custom): {:.2f}\".format(r2_score(y_train, predictions_poly_custom_train)))\n", "print(\"R^2 (test poly custom): {:.2f}\".format(r2_score(y_test, predictions_poly_custom)))\n", "print(\"R^2 (train): {:.2f}\".format(r2_score(y_train, predictions_train)))\n", "print(\"R^2 (test): {:.2f}\".format(r2_score(y_test, predictions)))\n", "\n" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "RBFs on the California Housing Prices dataset" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 9, "outputs": [], "source": [ "def rbf_kernel(X, centers, gamma):\n", " # Pairwise Euclidean distances calculation:\n", " # Compute the squared Euclidean distances between each sample and each center using broadcasting:\n", " # - Subtract each center from each sample to get a difference matrix of shape (n_samples, n_centers, n_features)\n", " # - Square each element in the difference matrix\n", " # - Sum the squared differences along the feature axis to get the squared distances matrix of shape (n_samples, n_centers)\n", " # - Take the square root of each element in the squared distances matrix to obtain the pairwise Euclidean distances matrix of shape (n_samples, n_centers)\n", " dists = np.sqrt(((X[:, np.newaxis] - centers)**2).sum(axis=2)) # shape (n_samples, n_centers)\n", " # Compute the RBF values for each distance using the Gaussian kernel\n", " rbf_vals = np.exp(-gamma * dists**2) # shape (n_samples, n_centers)\n", " return rbf_vals" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 10, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Linear regression on original data:\n", "MSE: 0.5558915986952443\n", "R^2: 0.5757877060324508\n", "\n", "Linear regression on RBF-transformed data:\n", "MSE: 0.37106446913117447\n", "R^2: 0.7168330839511696\n" ] } ], "source": [ "from sklearn.datasets import fetch_california_housing\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import mean_squared_error, r2_score\n", "\n", "# Load the California Housing Prices dataset\n", "data = fetch_california_housing()\n", "X = data['data']\n", "y = data['target']\n", "\n", "# Split the data into training and testing sets\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", "\n", "# Standardize the features\n", "scaler = StandardScaler()\n", "X_train_std = scaler.fit_transform(X_train)\n", "X_test_std = scaler.transform(X_test)\n", "\n", "# Choose the number of centroids and the RBF kernel width\n", "num_centroids = 100\n", "gamma = 0.1\n", "\n", "# Randomly select the centroids from the training set\n", "np.random.seed(42)\n", "idx = np.random.choice(X_train_std.shape[0], num_centroids, replace=False)\n", "centroids = X_train_std[idx] # (100, 8)\n", "\n", "# Compute the RBF features for the training and testing sets\n", "rbf_train = rbf_kernel(X_train_std, centroids, gamma) # (16512, 100)\n", "rbf_test = rbf_kernel(X_test_std, centroids, gamma) # (4128, 100)\n", "\n", "# Fit a linear regression model on the original and RBF-transformed data\n", "linreg_orig = LinearRegression().fit(X_train_std, y_train)\n", "linreg_rbf = LinearRegression().fit(rbf_train, y_train)\n", "\n", "# Evaluate the models on the testing set\n", "y_pred_orig = linreg_orig.predict(X_test_std)\n", "mse_orig = mean_squared_error(y_test, y_pred_orig)\n", "r2_orig = r2_score(y_test, y_pred_orig)\n", "\n", "y_pred_rbf = linreg_rbf.predict(rbf_test)\n", "mse_rbf = mean_squared_error(y_test, y_pred_rbf)\n", "r2_rbf = r2_score(y_test, y_pred_rbf)\n", "\n", "# Print the results\n", "print(\"Linear regression on original data:\")\n", "print(\"MSE:\", mse_orig)\n", "print(\"R^2:\", r2_orig)\n", "\n", "print(\"\\nLinear regression on RBF-transformed data:\")\n", "print(\"MSE:\", mse_rbf)\n", "print(\"R^2:\", r2_rbf)\n" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "# **(Bonus)** Multilayer Perceptron Algorithm for Regression of Concrete Compressive Strength Dataset" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Download the Concrete Compressive Strength Dataset from the UCI Machine Learning Repository." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 11, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1030, 9)\n" ] } ], "source": [ "# Download the Concrete Compressive Strength Dataset from the UCI Machine Learning Repository.\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "import numpy as np\n", "\n", "df = pd.read_excel('Concrete_Data.xls')\n", "print(df.shape)\n", "# df.head()" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Preprocess the data" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 12, "outputs": [], "source": [ "# Preprocess the data\n", "X = df.iloc[:, :-1].values\n", "y = df.iloc[:, -1].values.reshape(-1, 1)\n", "\n", "# Normalize the features\n", "X_norm = StandardScaler().fit_transform(X)\n", "\n", "# Split the data into training and testing sets\n", "X_train, X_test, y_train, y_test = train_test_split(X_norm, y, test_size=0.2, random_state=42)" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Define the multilayer perceptron algorithm" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 13, "outputs": [], "source": [ "# a multilayer perceptron algorithm class for regression problems\n", "class MLP:\n", " def __init__(self, input_dim, hidden_dim, output_dim, lr=0.01, epochs=1000):\n", " self.W1 = np.random.randn(input_dim, hidden_dim)\n", " self.b1 = np.zeros((1, hidden_dim))\n", " self.W2 = np.random.randn(hidden_dim, output_dim)\n", " self.b2 = np.zeros((1, output_dim))\n", " self.lr = lr\n", " self.epochs = epochs\n", "\n", " def forward(self, X):\n", " # forward propagation through our network\n", " self.z1 = np.dot(X, self.W1) + self.b1\n", " # activation function\n", " self.a1 = np.tanh(self.z1)\n", " # output layer\n", " self.z2 = np.dot(self.a1, self.W2) + self.b2\n", " # final activation function\n", " self.y_hat = self.z2\n", "\n", " def backward(self, X, y):\n", " # number of samples\n", " m = X.shape[0]\n", " # output layer gradient\n", " self.loss = np.mean((self.y_hat - y) ** 2) # MSE loss. shape (n_samples, output_dim)\n", " # output layer gradient\n", " delta2 = (self.y_hat - y) # shape (n_samples, output_dim)\n", " # hidden layer gradient\n", " dW2 = np.dot(self.a1.T, delta2) # shape (hidden_dim, output_dim)\n", " # bias gradient\n", " db2 = np.sum(delta2, axis=0, keepdims=True) # shape (1, output_dim)\n", " # hidden layer gradient\n", " delta1 = np.dot(delta2, self.W2.T) * (1 - np.power(self.a1, 2)) # shape (n_samples, hidden_dim)\n", " # input layer gradient\n", " dW1 = np.dot(X.T, delta1) # shape (input_dim, hidden_dim)\n", " # bias gradient\n", " db1 = np.sum(delta1, axis=0) # shape (1, hidden_dim)\n", " # update parameters\n", " self.W2 -= self.lr * dW2 / m\n", " self.b2 -= self.lr * db2 / m\n", " self.W1 -= self.lr * dW1 / m\n", " self.b1 -= self.lr * db1 / m\n", "\n", " def fit(self, X, y):\n", " for epoch in range(self.epochs):\n", " self.forward(X)\n", " self.backward(X, y)\n", "\n", " def predict(self, X):\n", " self.forward(X)\n", " return self.y_hat\n" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Train the model" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 14, "outputs": [], "source": [ "# Create an instance of the MLP class\n", "mlp = MLP(input_dim=X_train.shape[1], hidden_dim=10, output_dim=1, lr=0.01, epochs=1000)\n", "# Train the model\n", "mlp.fit(X_train, y_train)" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Evaluate the model" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 15, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Squared Error: 36.8911071801165\n" ] } ], "source": [ "# Evaluate the model\n", "from sklearn.metrics import mean_squared_error\n", "\n", "y_pred = mlp.predict(X_test)\n", "print(\"Mean Squared Error:\", mean_squared_error(y_test, y_pred))" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Compare the results with the linear regression model" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 16, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Squared Error: 95.97548435337708\n" ] } ], "source": [ "# Compare the results with the linear regression model\n", "from sklearn.linear_model import LinearRegression\n", "\n", "lr = LinearRegression()\n", "lr.fit(X_train, y_train)\n", "y_pred = lr.predict(X_test)\n", "print(\"Mean Squared Error:\", mean_squared_error(y_test, y_pred))" ], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }