# SPDX-FileCopyrightText: : 2023-2024 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT import requests from datetime import datetime, timedelta if config["enable"].get("retrieve", "auto") == "auto": config["enable"]["retrieve"] = has_internet_access() if config["enable"]["retrieve"] is False: print("Datafile downloads disabled in config[retrieve] or no internet access.") if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle", True): datafiles = [ "je-e-21.03.02.xls", "eez/World_EEZ_v8_2014.shp", "naturalearth/ne_10m_admin_0_countries.shp", "NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp", "nama_10r_3popgdp.tsv.gz", "nama_10r_3gdp.tsv.gz", "corine/g250_clc06_V18_5.tif", "eea/UNFCCC_v23.csv", "nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", "myb1-2017-nitro.xls", "emobility/KFZ__count", "emobility/Pkw__count", "h2_salt_caverns_GWh_per_sqkm.geojson", "natura/natura.tiff", "gebco/GEBCO_2014_2D.nc", ] rule retrieve_databundle: output: expand("data/bundle/{file}", file=datafiles), directory("data/bundle/jrc-idees-2015"), log: "logs/retrieve_databundle.log", resources: mem_mb=1000, retries: 2 conda: "../envs/retrieve.yaml" script: "../scripts/retrieve_databundle.py" rule retrieve_eurostat_data: output: directory("data/eurostat/Balances-April2023"), log: "logs/retrieve_eurostat_data.log", retries: 2 script: "../scripts/retrieve_eurostat_data.py" rule retrieve_jrc_idees: output: directory("data/bundle/jrc-idees-2021"), log: "logs/retrieve_jrc_idees.log", retries: 2 script: "../scripts/retrieve_jrc_idees.py" rule retrieve_eurostat_household_data: output: "data/eurostat/eurostat-household_energy_balances-february_2024.csv", log: "logs/retrieve_eurostat_household_data.log", retries: 2 script: "../scripts/retrieve_eurostat_household_data.py" if config["enable"]["retrieve"] and config["enable"].get("retrieve_cutout", True): rule retrieve_cutout: input: storage( "https://zenodo.org/records/6382570/files/{cutout}.nc", ), output: protected("cutouts/" + CDIR + "{cutout}.nc"), log: "logs/" + CDIR + "retrieve_cutout_{cutout}.log", resources: mem_mb=5000, retries: 2 run: move(input[0], output[0]) validate_checksum(output[0], input[0]) if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", True): rule retrieve_cost_data: params: version=config_provider("costs", "version"), output: resources("costs_{year}.csv"), log: logs("retrieve_cost_data_{year}.log"), resources: mem_mb=1000, retries: 2 conda: "../envs/retrieve.yaml" script: "../scripts/retrieve_cost_data.py" if config["enable"]["retrieve"]: datafiles = [ "IGGIELGN_LNGs.geojson", "IGGIELGN_BorderPoints.geojson", "IGGIELGN_Productions.geojson", "IGGIELGN_Storages.geojson", "IGGIELGN_PipeSegments.geojson", ] rule retrieve_gas_infrastructure_data: output: expand("data/gas_network/scigrid-gas/data/{files}", files=datafiles), log: "logs/retrieve_gas_infrastructure_data.log", retries: 2 conda: "../envs/retrieve.yaml" script: "../scripts/retrieve_gas_infrastructure_data.py" if config["enable"]["retrieve"]: rule retrieve_electricity_demand: params: versions=["2019-06-05", "2020-10-06"], output: "data/electricity_demand_raw.csv", log: "logs/retrieve_electricity_demand.log", resources: mem_mb=5000, retries: 2 conda: "../envs/retrieve.yaml" script: "../scripts/retrieve_electricity_demand.py" if config["enable"]["retrieve"]: rule retrieve_synthetic_electricity_demand: input: storage( "https://zenodo.org/records/10820928/files/demand_hourly.csv", ), output: "data/load_synthetic_raw.csv", log: "logs/retrieve_synthetic_electricity_demand.log", resources: mem_mb=5000, retries: 2 run: move(input[0], output[0]) if config["enable"]["retrieve"]: rule retrieve_ship_raster: input: storage( "https://zenodo.org/records/10973944/files/shipdensity_global.zip", keep_local=True, ), output: "data/shipdensity_global.zip", log: "logs/retrieve_ship_raster.log", resources: mem_mb=5000, retries: 2 run: move(input[0], output[0]) validate_checksum(output[0], input[0]) if config["enable"]["retrieve"]: # Downloading Copernicus Global Land Cover for land cover and land use: # Website: https://land.copernicus.eu/global/products/lc rule download_copernicus_land_cover: input: storage( "https://zenodo.org/records/3939050/files/PROBAV_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326.tif", ), output: "data/Copernicus_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326.tif", run: move(input[0], output[0]) validate_checksum(output[0], input[0]) if config["enable"]["retrieve"]: # Downloading LUISA Base Map for land cover and land use: # Website: https://ec.europa.eu/jrc/en/luisa rule retrieve_luisa_land_cover: input: storage( "https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/LUISA/EUROPE/Basemaps/LandUse/2018/LATEST/LUISA_basemap_020321_50m.tif", ), output: "data/LUISA_basemap_020321_50m.tif", run: move(input[0], output[0]) if config["enable"]["retrieve"]: # Some logic to find the correct file URL # Sometimes files are released delayed or ahead of schedule, check which file is currently available def check_file_exists(url): response = requests.head(url) return response.status_code == 200 # Basic pattern where WDPA files can be found url_pattern = ( "https://d1gam3xoknrgr2.cloudfront.net/current/WDPA_{bYYYY}_Public_shp.zip" ) # 3-letter month + 4 digit year for current/previous/next month to test current_monthyear = datetime.now().strftime("%b%Y") prev_monthyear = (datetime.now() - timedelta(30)).strftime("%b%Y") next_monthyear = (datetime.now() + timedelta(30)).strftime("%b%Y") # Test prioritised: current month -> previous -> next for bYYYY in [current_monthyear, prev_monthyear, next_monthyear]: if check_file_exists(url := url_pattern.format(bYYYY=bYYYY)): break else: # If None of the three URLs are working url = False assert ( url ), f"No WDPA files found at {url_pattern} for bY='{current_monthyear}, {prev_monthyear}, or {next_monthyear}'" # Downloading protected area database from WDPA # extract the main zip and then merge the contained 3 zipped shapefiles # Website: https://www.protectedplanet.net/en/thematic-areas/wdpa rule download_wdpa: input: storage(url, keep_local=True), params: zip="data/WDPA_shp.zip", folder=directory("data/WDPA"), output: gpkg="data/WDPA.gpkg", run: shell("cp {input} {params.zip}") shell("unzip -o {params.zip} -d {params.folder}") for i in range(3): # vsizip is special driver for directly working with zipped shapefiles in ogr2ogr layer_path = ( f"/vsizip/{params.folder}/WDPA_{bYYYY}_Public_shp_{i}.zip" ) print(f"Adding layer {i+1} of 3 to combined output file.") shell("ogr2ogr -f gpkg -update -append {output.gpkg} {layer_path}") rule download_wdpa_marine: # Downloading Marine protected area database from WDPA # extract the main zip and then merge the contained 3 zipped shapefiles # Website: https://www.protectedplanet.net/en/thematic-areas/marine-protected-areas input: storage( f"https://d1gam3xoknrgr2.cloudfront.net/current/WDPA_WDOECM_{bYYYY}_Public_marine_shp.zip", keep_local=True, ), params: zip="data/WDPA_WDOECM_marine.zip", folder=directory("data/WDPA_WDOECM_marine"), output: gpkg="data/WDPA_WDOECM_marine.gpkg", run: shell("cp {input} {params.zip}") shell("unzip -o {params.zip} -d {params.folder}") for i in range(3): # vsizip is special driver for directly working with zipped shapefiles in ogr2ogr layer_path = f"/vsizip/{params.folder}/WDPA_WDOECM_{bYYYY}_Public_marine_shp_{i}.zip" print(f"Adding layer {i+1} of 3 to combined output file.") shell("ogr2ogr -f gpkg -update -append {output.gpkg} {layer_path}") if config["enable"]["retrieve"]: rule retrieve_monthly_co2_prices: input: storage( "https://www.eex.com/fileadmin/EEX/Downloads/EUA_Emission_Spot_Primary_Market_Auction_Report/Archive_Reports/emission-spot-primary-market-auction-report-2019-data.xls", keep_local=True, ), output: "data/validation/emission-spot-primary-market-auction-report-2019-data.xls", log: "logs/retrieve_monthly_co2_prices.log", resources: mem_mb=5000, retries: 2 run: move(input[0], output[0]) if config["enable"]["retrieve"]: rule retrieve_monthly_fuel_prices: output: "data/validation/energy-price-trends-xlsx-5619002.xlsx", log: "logs/retrieve_monthly_fuel_prices.log", resources: mem_mb=5000, retries: 2 conda: "../envs/retrieve.yaml" script: "../scripts/retrieve_monthly_fuel_prices.py"