#!/usr/bin/env python # -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Build hydroelectric inflow time-series for each country. Relevant Settings ----------------- .. code:: yaml countries: renewable: hydro: cutout: clip_min_inflow: .. seealso:: Documentation of the configuration file ``config.yaml`` at :ref:`toplevel_cf`, :ref:`renewable_cf` Inputs ------ - ``data/bundle/EIA_hydro_generation_2000_2014.csv``: Hydroelectricity net generation per country and year (`EIA `_) .. image:: img/hydrogeneration.png :scale: 33 % - ``resources/country_shapes.geojson``: confer :ref:`shapes` - ``"cutouts/" + config["renewable"]['hydro']['cutout']``: confer :ref:`cutout` Outputs ------- - ``resources/profile_hydro.nc``: =================== ================ ========================================================= Field Dimensions Description =================== ================ ========================================================= inflow countries, time Inflow to the state of charge (in MW), e.g. due to river inflow in hydro reservoir. =================== ================ ========================================================= .. image:: img/inflow-ts.png :scale: 33 % .. image:: img/inflow-box.png :scale: 33 % Description ----------- .. seealso:: :mod:`build_renewable_profiles` """ import logging import atlite import country_converter as coco import geopandas as gpd import pandas as pd from _helpers import configure_logging cc = coco.CountryConverter() def get_eia_annual_hydro_generation(fn, countries): # in billion kWh/a = TWh/a df = pd.read_csv(fn, skiprows=2, index_col=1, na_values=[" ", "--"]).iloc[1:, 1:] df.index = df.index.str.strip() former_countries = { "Former Czechoslovakia": dict( countries=["Czech Republic", "Slovakia"], start=1980, end=1992 ), "Former Serbia and Montenegro": dict( countries=["Serbia", "Montenegro"], start=1992, end=2005 ), "Former Yugoslavia": dict( countries=[ "Slovenia", "Croatia", "Bosnia and Herzegovina", "Serbia", "Montenegro", "North Macedonia", ], start=1980, end=1991, ), } for k, v in former_countries.items(): period = [str(i) for i in range(v["start"], v["end"] + 1)] ratio = df.loc[v["countries"]].T.dropna().sum() ratio /= ratio.sum() for country in v["countries"]: df.loc[country, period] = df.loc[k, period] * ratio[country] baltic_states = ["Latvia", "Estonia", "Lithuania"] df.loc[baltic_states] = ( df.loc[baltic_states].T.fillna(df.loc[baltic_states].mean(axis=1)).T ) df.loc["Germany"] = df.filter(like="Germany", axis=0).sum() df.loc["Serbia"] += df.loc["Kosovo"].fillna(0.0) df = df.loc[~df.index.str.contains("Former")] df.drop(["Europe", "Germany, West", "Germany, East", "Kosovo"], inplace=True) df.index = cc.convert(df.index, to="iso2") df.index.name = "countries" df = df.T[countries] * 1e6 # in MWh/a return df logger = logging.getLogger(__name__) if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake("build_hydro_profile") configure_logging(snakemake) config_hydro = snakemake.config["renewable"]["hydro"] cutout = atlite.Cutout(snakemake.input.cutout) countries = snakemake.config["countries"] country_shapes = ( gpd.read_file(snakemake.input.country_shapes) .set_index("name")["geometry"] .reindex(countries) ) country_shapes.index.name = "countries" fn = snakemake.input.eia_hydro_generation eia_stats = get_eia_annual_hydro_generation(fn, countries) inflow = cutout.runoff( shapes=country_shapes, smooth=True, lower_threshold_quantile=True, normalize_using_yearly=eia_stats, ) if "clip_min_inflow" in config_hydro: inflow = inflow.where(inflow > config_hydro["clip_min_inflow"], 0) inflow.to_netcdf(snakemake.output[0])