""" Iteratively solves expansion problem like the rule ``solve_network``, but additionally records intermediate branch capacity steps and values of the objective function. Relevant Settings ----------------- .. code:: yaml solving: tmpdir: options: formulation: clip_p_max_pu: load_shedding: noisy_costs: nhours: min_iterations: max_iterations: solver: name: {solveroptions}: Inputs ------ - ``networks/{network}_s{simpl}_{clusters}_l{ll}_{opts}.nc``: confer :ref:`prepare` Outputs ------- - ``results/networks/{network}_s{simpl}_{clusters}_l{ll}_{opts}_trace.nc``: Solved PyPSA network including optimisation results (with trace) Description ----------- """ import numpy as np import pandas as pd import logging logger = logging.getLogger(__name__) from solve_network import patch_pyomo_tmpdir, prepare_network, solve_network import pypsa if __name__ == "__main__": # Detect running outside of snakemake and mock snakemake for testing if 'snakemake' not in globals(): from vresutils.snakemake import MockSnakemake, Dict snakemake = MockSnakemake( wildcards=dict(network='elec', simpl='', clusters='45', lv='1.25', opts='Co2L-3H'), input=["networks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}.nc"], output=["results/networks/s{simpl}_{clusters}_lv{lv}_{opts}_trace.nc"], log=dict(python="logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_python_trace.log") ) tmpdir = snakemake.config['solving'].get('tmpdir') if tmpdir is not None: patch_pyomo_tmpdir(tmpdir) logging.basicConfig(filename=snakemake.log.python, level=snakemake.config['logging_level']) n = pypsa.Network(snakemake.input[0]) solver_log = 'solver.log' config = snakemake.config['solving'] opts = snakemake.wildcards.opts.split('-') def save_optimal_capacities(net, iteration, status): net.lines[f"s_nom_opt_{iteration}"] = net.lines["s_nom_opt"] net.links[f"p_nom_opt_{iteration}"] = net.links["p_nom_opt"] setattr(net, f"status_{iteration}", status) setattr(net, f"objective_{iteration}", net.objective) net.iteration = iteration net.export_to_netcdf(snakemake.output[0]) config['options']['max_iterations'] = 12 n = prepare_network(n, config['options']) n = solve_network(n, config, solver_log, opts, save_optimal_capacities) n.export_to_netcdf(snakemake.output[0])