# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT # coding: utf-8 """ Adds electrical generators and existing hydro storage units to a base network. Relevant Settings ----------------- .. code:: yaml costs: year: version: dicountrate: emission_prices: electricity: max_hours: marginal_cost: capital_cost: conventional_carriers: co2limit: extendable_carriers: estimate_renewable_capacities: load: scaling_factor: renewable: hydro: carriers: hydro_max_hours: hydro_capital_cost: lines: length_factor: .. seealso:: Documentation of the configuration file ``config.yaml`` at :ref:`costs_cf`, :ref:`electricity_cf`, :ref:`load_cf`, :ref:`renewable_cf`, :ref:`lines_cf` Inputs ------ - ``resources/costs.csv``: The database of cost assumptions for all included technologies for specific years from various sources; e.g. discount rate, lifetime, investment (CAPEX), fixed operation and maintenance (FOM), variable operation and maintenance (VOM), fuel costs, efficiency, carbon-dioxide intensity. - ``data/bundle/hydro_capacities.csv``: Hydropower plant store/discharge power capacities, energy storage capacity, and average hourly inflow by country. .. image:: ../img/hydrocapacities.png :scale: 34 % - ``data/geth2015_hydro_capacities.csv``: alternative to capacities above; not currently used! - ``resources/load.csv`` Hourly per-country load profiles. - ``resources/regions_onshore.geojson``: confer :ref:`busregions` - ``resources/nuts3_shapes.geojson``: confer :ref:`shapes` - ``resources/powerplants.csv``: confer :ref:`powerplants` - ``resources/profile_{}.nc``: all technologies in ``config["renewables"].keys()``, confer :ref:`renewableprofiles`. - ``networks/base.nc``: confer :ref:`base` Outputs ------- - ``networks/elec.nc``: .. image:: ../img/elec.png :scale: 33 % Description ----------- The rule :mod:`add_electricity` ties all the different data inputs from the preceding rules together into a detailed PyPSA network that is stored in ``networks/elec.nc``. It includes: - today's transmission topology and transfer capacities (optionally including lines which are under construction according to the config settings ``lines: under_construction`` and ``links: under_construction``), - today's thermal and hydro power generation capacities (for the technologies listed in the config setting ``electricity: conventional_carriers``), and - today's load time-series (upsampled in a top-down approach according to population and gross domestic product) It further adds extendable ``generators`` with **zero** capacity for - photovoltaic, onshore and AC- as well as DC-connected offshore wind installations with today's locational, hourly wind and solar capacity factors (but **no** current capacities), - additional open- and combined-cycle gas turbines (if ``OCGT`` and/or ``CCGT`` is listed in the config setting ``electricity: extendable_carriers``) """ import logging from _helpers import configure_logging, update_p_nom_max import pypsa import pandas as pd import numpy as np import xarray as xr import geopandas as gpd import powerplantmatching as pm from powerplantmatching.export import map_country_bus from vresutils import transfer as vtransfer idx = pd.IndexSlice logger = logging.getLogger(__name__) def normed(s): return s/s.sum() def calculate_annuity(n, r): """Calculate the annuity factor for an asset with lifetime n years and discount rate of r, e.g. annuity(20, 0.05) * 20 = 1.6""" if isinstance(r, pd.Series): return pd.Series(1/n, index=r.index).where(r == 0, r/(1. - 1./(1.+r)**n)) elif r > 0: return r / (1. - 1./(1.+r)**n) else: return 1 / n def _add_missing_carriers_from_costs(n, costs, carriers): missing_carriers = pd.Index(carriers).difference(n.carriers.index) if missing_carriers.empty: return emissions_cols = costs.columns.to_series()\ .loc[lambda s: s.str.endswith('_emissions')].values suptechs = missing_carriers.str.split('-').str[0] emissions = costs.loc[suptechs, emissions_cols].fillna(0.) emissions.index = missing_carriers n.import_components_from_dataframe(emissions, 'Carrier') def load_costs(tech_costs, config, elec_config, Nyears=1.): # set all asset costs and other parameters costs = pd.read_csv(tech_costs, index_col=[0,1]).sort_index() # correct units to MW costs.loc[costs.unit.str.contains("/kW"),"value"] *= 1e3 costs.unit = costs.unit.str.replace("/kW", "/MW") fill_values = config["fill_values"] costs = costs.value.unstack().fillna(fill_values) costs["capital_cost"] = ((calculate_annuity(costs["lifetime"], costs["discount rate"]) + costs["FOM"]/100.) * costs["investment"] * Nyears) costs.at['OCGT', 'fuel'] = costs.at['gas', 'fuel'] costs.at['CCGT', 'fuel'] = costs.at['gas', 'fuel'] costs['marginal_cost'] = costs['VOM'] + costs['fuel'] / costs['efficiency'] costs = costs.rename(columns={"CO2 intensity": "co2_emissions"}) costs.at['OCGT', 'co2_emissions'] = costs.at['gas', 'co2_emissions'] costs.at['CCGT', 'co2_emissions'] = costs.at['gas', 'co2_emissions'] costs.at['solar', 'capital_cost'] = config["rooftop_share"] * costs.at['solar-rooftop', 'capital_cost'] + \ (1-config["rooftop_share"]) * costs.at['solar-utility', 'capital_cost'] def costs_for_storage(store, link1, link2=None, max_hours=1.): capital_cost = link1['capital_cost'] + max_hours * store['capital_cost'] if link2 is not None: capital_cost += link2['capital_cost'] return pd.Series(dict(capital_cost=capital_cost, marginal_cost=0., co2_emissions=0.)) max_hours = elec_config['max_hours'] costs.loc["battery"] = \ costs_for_storage(costs.loc["battery storage"], costs.loc["battery inverter"], max_hours=max_hours['battery']) costs.loc["H2"] = \ costs_for_storage(costs.loc["hydrogen storage underground"], costs.loc["fuel cell"], costs.loc["electrolysis"], max_hours=max_hours['H2']) for attr in ('marginal_cost', 'capital_cost'): overwrites = config.get(attr) if overwrites is not None: overwrites = pd.Series(overwrites) costs.loc[overwrites.index, attr] = overwrites return costs def load_powerplants(ppl_fn): carrier_dict = {'ocgt': 'OCGT', 'ccgt': 'CCGT', 'bioenergy': 'biomass', 'ccgt, thermal': 'CCGT', 'hard coal': 'coal'} return (pd.read_csv(ppl_fn, index_col=0, dtype={'bus': 'str'}) .powerplant.to_pypsa_names() .rename(columns=str.lower) .replace({'carrier': carrier_dict})) def attach_load(n, regions, load, nuts3_shapes, countries, scaling=1.): substation_lv_i = n.buses.index[n.buses['substation_lv']] regions = (gpd.read_file(regions).set_index('name') .reindex(substation_lv_i)) opsd_load = (pd.read_csv(load, index_col=0, parse_dates=True) .filter(items=countries)) logger.info(f"Load data scaled with scalling factor {scaling}.") opsd_load *= scaling nuts3 = gpd.read_file(nuts3_shapes).set_index('index') def upsample(cntry, group): l = opsd_load[cntry] if len(group) == 1: return pd.DataFrame({group.index[0]: l}) else: nuts3_cntry = nuts3.loc[nuts3.country == cntry] transfer = vtransfer.Shapes2Shapes(group, nuts3_cntry.geometry, normed=False).T.tocsr() gdp_n = pd.Series(transfer.dot(nuts3_cntry['gdp'].fillna(1.).values), index=group.index) pop_n = pd.Series(transfer.dot(nuts3_cntry['pop'].fillna(1.).values), index=group.index) # relative factors 0.6 and 0.4 have been determined from a linear # regression on the country to continent load data factors = normed(0.6 * normed(gdp_n) + 0.4 * normed(pop_n)) return pd.DataFrame(factors.values * l.values[:,np.newaxis], index=l.index, columns=factors.index) load = pd.concat([upsample(cntry, group) for cntry, group in regions.geometry.groupby(regions.country)], axis=1) n.madd("Load", substation_lv_i, bus=substation_lv_i, p_set=load) def update_transmission_costs(n, costs, length_factor=1.0): # TODO: line length factor of lines is applied to lines and links. # Separate the function to distinguish. n.lines['capital_cost'] = (n.lines['length'] * length_factor * costs.at['HVAC overhead', 'capital_cost']) if n.links.empty: return dc_b = n.links.carrier == 'DC' # If there are no dc links, then the 'underwater_fraction' column # may be missing. Therefore we have to return here. if n.links.loc[dc_b].empty: return costs = (n.links.loc[dc_b, 'length'] * length_factor * ((1. - n.links.loc[dc_b, 'underwater_fraction']) * costs.at['HVDC overhead', 'capital_cost'] + n.links.loc[dc_b, 'underwater_fraction'] * costs.at['HVDC submarine', 'capital_cost']) + costs.at['HVDC inverter pair', 'capital_cost']) n.links.loc[dc_b, 'capital_cost'] = costs def attach_wind_and_solar(n, costs, input_profiles, technologies, extendable_carriers, line_length_factor=1): # TODO: rename tech -> carrier, technologies -> carriers _add_missing_carriers_from_costs(n, costs, technologies) for tech in technologies: if tech == 'hydro': continue with xr.open_dataset(getattr(input_profiles, 'profile_' + tech)) as ds: if ds.indexes['bus'].empty: continue suptech = tech.split('-', 2)[0] if suptech == 'offwind': underwater_fraction = ds['underwater_fraction'].to_pandas() connection_cost = (line_length_factor * ds['average_distance'].to_pandas() * (underwater_fraction * costs.at[tech + '-connection-submarine', 'capital_cost'] + (1. - underwater_fraction) * costs.at[tech + '-connection-underground', 'capital_cost'])) capital_cost = (costs.at['offwind', 'capital_cost'] + costs.at[tech + '-station', 'capital_cost'] + connection_cost) logger.info("Added connection cost of {:0.0f}-{:0.0f} Eur/MW/a to {}" .format(connection_cost.min(), connection_cost.max(), tech)) else: capital_cost = costs.at[tech, 'capital_cost'] n.madd("Generator", ds.indexes['bus'], ' ' + tech, bus=ds.indexes['bus'], carrier=tech, p_nom_extendable=tech in extendable_carriers['Generator'], p_nom_max=ds['p_nom_max'].to_pandas(), weight=ds['weight'].to_pandas(), marginal_cost=costs.at[suptech, 'marginal_cost'], capital_cost=capital_cost, efficiency=costs.at[suptech, 'efficiency'], p_max_pu=ds['profile'].transpose('time', 'bus').to_pandas()) def attach_conventional_generators(n, costs, ppl, conventional_carriers, extendable_carriers, conventional_config, conventional_inputs): carriers = set(conventional_carriers) | set(extendable_carriers['Generator']) _add_missing_carriers_from_costs(n, costs, carriers) ppl = (ppl.query('carrier in @carriers').join(costs, on='carrier', rsuffix='_r') .rename(index=lambda s: 'C' + str(s))) ppl["efficiency"] = ppl.efficiency.fillna(ppl.efficiency_r) logger.info('Adding {} generators with capacities [GW] \n{}' .format(len(ppl), ppl.groupby('carrier').p_nom.sum().div(1e3).round(2))) n.madd("Generator", ppl.index, carrier=ppl.carrier, bus=ppl.bus, p_nom_min=ppl.p_nom.where(ppl.carrier.isin(conventional_carriers), 0), p_nom=ppl.p_nom.where(ppl.carrier.isin(conventional_carriers), 0), p_nom_extendable=ppl.carrier.isin(extendable_carriers['Generator']), efficiency=ppl.efficiency, marginal_cost=ppl.marginal_cost, capital_cost=ppl.capital_cost, build_year=ppl.datein.fillna(0).astype(int), lifetime=(ppl.dateout - ppl.datein).fillna(np.inf), ) for carrier in conventional_config: # Generators with technology affected idx = n.generators.query("carrier == @carrier").index for attr in list(set(conventional_config[carrier]) & set(n.generators)): values = conventional_config[carrier][attr] if f"conventional_{carrier}_{attr}" in conventional_inputs: # Values affecting generators of technology k country-specific # First map generator buses to countries; then map countries to p_max_pu values = pd.read_csv(values, index_col=0).iloc[:, 0] bus_values = n.buses.country.map(values) n.generators[attr].update(n.generators.loc[idx].bus.map(bus_values).dropna()) else: # Single value affecting all generators of technology k indiscriminantely of country n.generators.loc[idx, attr] = values def attach_hydro(n, costs, ppl, profile_hydro, hydro_capacities, carriers, **config): _add_missing_carriers_from_costs(n, costs, carriers) ppl = ppl.query('carrier == "hydro"').reset_index(drop=True)\ .rename(index=lambda s: str(s) + ' hydro') ror = ppl.query('technology == "Run-Of-River"') phs = ppl.query('technology == "Pumped Storage"') hydro = ppl.query('technology == "Reservoir"') country = ppl['bus'].map(n.buses.country).rename("country") inflow_idx = ror.index.union(hydro.index) if not inflow_idx.empty: dist_key = ppl.loc[inflow_idx, 'p_nom'].groupby(country).transform(normed) with xr.open_dataarray(profile_hydro) as inflow: inflow_countries = pd.Index(country[inflow_idx]) missing_c = (inflow_countries.unique() .difference(inflow.indexes['countries'])) assert missing_c.empty, (f"'{profile_hydro}' is missing " f"inflow time-series for at least one country: {', '.join(missing_c)}") inflow_t = (inflow.sel(countries=inflow_countries) .rename({'countries': 'name'}) .assign_coords(name=inflow_idx) .transpose('time', 'name') .to_pandas() .multiply(dist_key, axis=1)) if 'ror' in carriers and not ror.empty: n.madd("Generator", ror.index, carrier='ror', bus=ror['bus'], p_nom=ror['p_nom'], efficiency=costs.at['ror', 'efficiency'], capital_cost=costs.at['ror', 'capital_cost'], weight=ror['p_nom'], p_max_pu=(inflow_t[ror.index] .divide(ror['p_nom'], axis=1) .where(lambda df: df<=1., other=1.))) if 'PHS' in carriers and not phs.empty: # fill missing max hours to config value and # assume no natural inflow due to lack of data max_hours = config.get('PHS_max_hours', 6) phs = phs.replace({'max_hours': {0: max_hours}}) n.madd('StorageUnit', phs.index, carrier='PHS', bus=phs['bus'], p_nom=phs['p_nom'], capital_cost=costs.at['PHS', 'capital_cost'], max_hours=phs['max_hours'], efficiency_store=np.sqrt(costs.at['PHS','efficiency']), efficiency_dispatch=np.sqrt(costs.at['PHS','efficiency']), cyclic_state_of_charge=True) if 'hydro' in carriers and not hydro.empty: hydro_max_hours = config.get('hydro_max_hours') assert hydro_max_hours is not None, "No path for hydro capacities given." hydro_stats = pd.read_csv(hydro_capacities, comment="#", na_values='-', index_col=0) e_target = hydro_stats["E_store[TWh]"].clip(lower=0.2) * 1e6 e_installed = hydro.eval('p_nom * max_hours').groupby(hydro.country).sum() e_missing = e_target - e_installed missing_mh_i = hydro.query('max_hours == 0').index if hydro_max_hours == 'energy_capacity_totals_by_country': # watch out some p_nom values like IE's are totally underrepresented max_hours_country = e_missing / \ hydro.loc[missing_mh_i].groupby('country').p_nom.sum() elif hydro_max_hours == 'estimate_by_large_installations': max_hours_country = hydro_stats['E_store[TWh]'] * 1e3 / \ hydro_stats['p_nom_discharge[GW]'] missing_countries = (pd.Index(hydro['country'].unique()) .difference(max_hours_country.dropna().index)) if not missing_countries.empty: logger.warning("Assuming max_hours=6 for hydro reservoirs in the countries: {}" .format(", ".join(missing_countries))) hydro_max_hours = hydro.max_hours.where(hydro.max_hours > 0, hydro.country.map(max_hours_country)).fillna(6) n.madd('StorageUnit', hydro.index, carrier='hydro', bus=hydro['bus'], p_nom=hydro['p_nom'], max_hours=hydro_max_hours, capital_cost=costs.at['hydro', 'capital_cost'], marginal_cost=costs.at['hydro', 'marginal_cost'], p_max_pu=1., # dispatch p_min_pu=0., # store efficiency_dispatch=costs.at['hydro', 'efficiency'], efficiency_store=0., cyclic_state_of_charge=True, inflow=inflow_t.loc[:, hydro.index]) def attach_extendable_generators(n, costs, ppl, carriers): logger.warning("The function `attach_extendable_generators` is deprecated in v0.5.0.") _add_missing_carriers_from_costs(n, costs, carriers) for tech in carriers: if tech.startswith('OCGT'): ocgt = ppl.query("carrier in ['OCGT', 'CCGT']").groupby('bus', as_index=False).first() n.madd('Generator', ocgt.index, suffix=' OCGT', bus=ocgt['bus'], carrier=tech, p_nom_extendable=True, p_nom=0., capital_cost=costs.at['OCGT', 'capital_cost'], marginal_cost=costs.at['OCGT', 'marginal_cost'], efficiency=costs.at['OCGT', 'efficiency']) elif tech.startswith('CCGT'): ccgt = ppl.query("carrier in ['OCGT', 'CCGT']").groupby('bus', as_index=False).first() n.madd('Generator', ccgt.index, suffix=' CCGT', bus=ccgt['bus'], carrier=tech, p_nom_extendable=True, p_nom=0., capital_cost=costs.at['CCGT', 'capital_cost'], marginal_cost=costs.at['CCGT', 'marginal_cost'], efficiency=costs.at['CCGT', 'efficiency']) elif tech.startswith('nuclear'): nuclear = ppl.query("carrier == 'nuclear'").groupby('bus', as_index=False).first() n.madd('Generator', nuclear.index, suffix=' nuclear', bus=nuclear['bus'], carrier=tech, p_nom_extendable=True, p_nom=0., capital_cost=costs.at['nuclear', 'capital_cost'], marginal_cost=costs.at['nuclear', 'marginal_cost'], efficiency=costs.at['nuclear', 'efficiency']) else: raise NotImplementedError(f"Adding extendable generators for carrier " "'{tech}' is not implemented, yet. " "Only OCGT, CCGT and nuclear are allowed at the moment.") def attach_OPSD_renewables(n, tech_map): tech_string = ", ".join(sum(tech_map.values(), [])) logger.info(f'Using OPSD renewable capacities for carriers {tech_string}.') df = pm.data.OPSD_VRE().powerplant.convert_country_to_alpha2() technology_b = ~df.Technology.isin(['Onshore', 'Offshore']) df['Fueltype'] = df.Fueltype.where(technology_b, df.Technology).replace({"Solar": "PV"}) df = df.query('Fueltype in @tech_map').powerplant.convert_country_to_alpha2() for fueltype, carriers in tech_map.items(): gens = n.generators[lambda df: df.carrier.isin(carriers)] buses = n.buses.loc[gens.bus.unique()] gens_per_bus = gens.groupby('bus').p_nom.count() caps = map_country_bus(df.query('Fueltype == @fueltype'), buses) caps = caps.groupby(['bus']).Capacity.sum() caps = caps / gens_per_bus.reindex(caps.index, fill_value=1) n.generators.p_nom.update(gens.bus.map(caps).dropna()) n.generators.p_nom_min.update(gens.bus.map(caps).dropna()) def estimate_renewable_capacities(n, config): year = config["electricity"]["estimate_renewable_capacities"]["year"] tech_map = config["electricity"]["estimate_renewable_capacities"]["technology_mapping"] countries = config["countries"] expansion_limit = config["electricity"]["estimate_renewable_capacities"]["expansion_limit"] if not len(countries) or not len(tech_map): return capacities = pm.data.IRENASTAT().powerplant.convert_country_to_alpha2() capacities = capacities.query("Year == @year and Technology in @tech_map and Country in @countries") capacities = capacities.groupby(["Technology", "Country"]).Capacity.sum() logger.info(f"Heuristics applied to distribute renewable capacities [GW]: " f"\n{capacities.groupby('Technology').sum().div(1e3).round(2)}") for ppm_technology, techs in tech_map.items(): tech_i = n.generators.query('carrier in @techs').index stats = capacities.loc[ppm_technology].reindex(countries, fill_value=0.) country = n.generators.bus[tech_i].map(n.buses.country) existent = n.generators.p_nom[tech_i].groupby(country).sum() missing = stats - existent dist = n.generators_t.p_max_pu.mean() * n.generators.p_nom_max n.generators.loc[tech_i, 'p_nom'] += ( dist[tech_i] .groupby(country) .transform(lambda s: normed(s) * missing[s.name]) .where(lambda s: s>0.1, 0.) # only capacities above 100kW ) n.generators.loc[tech_i, 'p_nom_min'] = n.generators.loc[tech_i, 'p_nom'] if expansion_limit: assert np.isscalar(expansion_limit) logger.info(f"Reducing capacity expansion limit to {expansion_limit*100:.2f}% of installed capacity.") n.generators.loc[tech_i, 'p_nom_max'] = expansion_limit * n.generators.loc[tech_i, 'p_nom_min'] def add_nice_carrier_names(n, config): carrier_i = n.carriers.index nice_names = (pd.Series(config['plotting']['nice_names']) .reindex(carrier_i).fillna(carrier_i.to_series().str.title())) n.carriers['nice_name'] = nice_names colors = pd.Series(config['plotting']['tech_colors']).reindex(carrier_i) if colors.isna().any(): missing_i = list(colors.index[colors.isna()]) logger.warning(f'tech_colors for carriers {missing_i} not defined in config.') n.carriers['color'] = colors if __name__ == "__main__": if 'snakemake' not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake('add_electricity') configure_logging(snakemake) n = pypsa.Network(snakemake.input.base_network) Nyears = n.snapshot_weightings.objective.sum() / 8760. costs = load_costs(snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity'], Nyears) ppl = load_powerplants(snakemake.input.powerplants) if "renewable_carriers" in snakemake.config['electricity']: renewable_carriers = set(snakemake.config['renewable']) else: logger.warning("Missing key `renewable_carriers` under config entry `electricity`. " "In future versions, this will raise an error. " "Falling back to carriers listed under `renewable`.") renewable_carriers = snakemake.config['renewable'] extendable_carriers = snakemake.config['electricity']['extendable_carriers'] if not (set(renewable_carriers) & set(extendable_carriers['Generator'])): logger.warning("No renewables found in config entry `extendable_carriers`. " "In future versions, these have to be explicitely listed. " "Falling back to all renewables.") conventional_carriers = snakemake.config["electricity"]["conventional_carriers"] attach_load(n, snakemake.input.regions, snakemake.input.load, snakemake.input.nuts3_shapes, snakemake.config['countries'], snakemake.config['load']['scaling_factor']) update_transmission_costs(n, costs, snakemake.config['lines']['length_factor']) conventional_inputs = {k: v for k, v in snakemake.input.items() if k.startswith("conventional_")} attach_conventional_generators(n, costs, ppl, conventional_carriers, extendable_carriers, snakemake.config.get("conventional", {}), conventional_inputs) attach_wind_and_solar(n, costs, snakemake.input, renewable_carriers, extendable_carriers, snakemake.config['lines']['length_factor']) if 'hydro' in renewable_carriers: conf = snakemake.config['renewable']['hydro'] attach_hydro(n, costs, ppl, snakemake.input.profile_hydro, snakemake.input.hydro_capacities, conf.pop('carriers', []), **conf) if "estimate_renewable_capacities" not in snakemake.config['electricity']: logger.warning("Missing key `estimate_renewable_capacities` under config entry `electricity`. " "In future versions, this will raise an error. " "Falling back to whether ``estimate_renewable_capacities_from_capacity_stats`` is in the config.") if "estimate_renewable_capacities_from_capacity_stats" in snakemake.config['electricity']: estimate_renewable_caps = {'enable': True, **snakemake.config['electricity']["estimate_renewable_capacities_from_capacity_stats"]} else: estimate_renewable_caps = {'enable': False} else: estimate_renewable_caps = snakemake.config['electricity']["estimate_renewable_capacities"] if "enable" not in estimate_renewable_caps: logger.warning("Missing key `enable` under config entry `estimate_renewable_capacities`. " "In future versions, this will raise an error. Falling back to False.") estimate_renewable_caps = {'enable': False} if "from_opsd" not in estimate_renewable_caps: logger.warning("Missing key `from_opsd` under config entry `estimate_renewable_capacities`. " "In future versions, this will raise an error. " "Falling back to whether `renewable_capacities_from_opsd` is non-empty.") from_opsd = bool(snakemake.config["electricity"].get("renewable_capacities_from_opsd", False)) estimate_renewable_caps['from_opsd'] = from_opsd if estimate_renewable_caps["enable"]: if estimate_renewable_caps["from_opsd"]: tech_map = snakemake.config["electricity"]["estimate_renewable_capacities"]["technology_mapping"] attach_OPSD_renewables(n, tech_map) estimate_renewable_capacities(n, snakemake.config) update_p_nom_max(n) add_nice_carrier_names(n, snakemake.config) n.meta = snakemake.config n.export_to_netcdf(snakemake.output[0])