import numpy as np import pandas as pd import logging logger = logging.getLogger(__name__) import gc import os import pypsa from pypsa.linopt import get_var, linexpr, define_constraints from pypsa.descriptors import free_output_series_dataframes # Suppress logging of the slack bus choices pypsa.pf.logger.setLevel(logging.WARNING) from vresutils.benchmark import memory_logger #First tell PyPSA that links can have multiple outputs by #overriding the component_attrs. This can be done for #as many buses as you need with format busi for i = 2,3,4,5,.... #See https://pypsa.org/doc/components.html#link-with-multiple-outputs-or-inputs override_component_attrs = pypsa.descriptors.Dict({k : v.copy() for k,v in pypsa.components.component_attrs.items()}) override_component_attrs["Link"].loc["bus2"] = ["string",np.nan,np.nan,"2nd bus","Input (optional)"] override_component_attrs["Link"].loc["bus3"] = ["string",np.nan,np.nan,"3rd bus","Input (optional)"] override_component_attrs["Link"].loc["bus4"] = ["string",np.nan,np.nan,"4th bus","Input (optional)"] override_component_attrs["Link"].loc["efficiency2"] = ["static or series","per unit",1.,"2nd bus efficiency","Input (optional)"] override_component_attrs["Link"].loc["efficiency3"] = ["static or series","per unit",1.,"3rd bus efficiency","Input (optional)"] override_component_attrs["Link"].loc["efficiency4"] = ["static or series","per unit",1.,"4th bus efficiency","Input (optional)"] override_component_attrs["Link"].loc["p2"] = ["series","MW",0.,"2nd bus output","Output"] override_component_attrs["Link"].loc["p3"] = ["series","MW",0.,"3rd bus output","Output"] override_component_attrs["Link"].loc["p4"] = ["series","MW",0.,"4th bus output","Output"] def patch_pyomo_tmpdir(tmpdir): # PYOMO should write its lp files into tmp here import os if not os.path.isdir(tmpdir): os.mkdir(tmpdir) from pyutilib.services import TempfileManager TempfileManager.tempdir = tmpdir def prepare_network(n, solve_opts=None): if solve_opts is None: solve_opts = snakemake.config['solving']['options'] if 'clip_p_max_pu' in solve_opts: for df in (n.generators_t.p_max_pu, n.generators_t.p_min_pu, n.storage_units_t.inflow): df.where(df>solve_opts['clip_p_max_pu'], other=0., inplace=True) if solve_opts.get('load_shedding'): n.add("Carrier", "Load") n.madd("Generator", n.buses.index, " load", bus=n.buses.index, carrier='load', sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW marginal_cost=1e2, # Eur/kWh # intersect between macroeconomic and surveybased # willingness to pay # http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full p_nom=1e9 # kW ) if solve_opts.get('noisy_costs'): for t in n.iterate_components(): #if 'capital_cost' in t.df: # t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5) if 'marginal_cost' in t.df: np.random.seed(174) t.df['marginal_cost'] += 1e-2 + 2e-3*(np.random.random(len(t.df)) - 0.5) for t in n.iterate_components(['Line', 'Link']): np.random.seed(123) t.df['capital_cost'] += (1e-1 + 2e-2*(np.random.random(len(t.df)) - 0.5)) * t.df['length'] if solve_opts.get('nhours'): nhours = solve_opts['nhours'] n.set_snapshots(n.snapshots[:nhours]) n.snapshot_weightings[:] = 8760./nhours if snakemake.config['foresight']=='myopic': add_land_use_constraint(n) return n def add_opts_constraints(n, opts=None): if opts is None: opts = snakemake.wildcards.opts.split('-') if 'BAU' in opts: mincaps = snakemake.config['electricity']['BAU_mincapacities'] def bau_mincapacities_rule(model, carrier): gens = n.generators.index[n.generators.p_nom_extendable & (n.generators.carrier == carrier)] return sum(model.generator_p_nom[gen] for gen in gens) >= mincaps[carrier] n.model.bau_mincapacities = pypsa.opt.Constraint(list(mincaps), rule=bau_mincapacities_rule) if 'SAFE' in opts: peakdemand = (1. + snakemake.config['electricity']['SAFE_reservemargin']) * n.loads_t.p_set.sum(axis=1).max() conv_techs = snakemake.config['plotting']['conv_techs'] exist_conv_caps = n.generators.loc[n.generators.carrier.isin(conv_techs) & ~n.generators.p_nom_extendable, 'p_nom'].sum() ext_gens_i = n.generators.index[n.generators.carrier.isin(conv_techs) & n.generators.p_nom_extendable] n.model.safe_peakdemand = pypsa.opt.Constraint(expr=sum(n.model.generator_p_nom[gen] for gen in ext_gens_i) >= peakdemand - exist_conv_caps) def add_eps_storage_constraint(n): if not hasattr(n, 'epsilon'): n.epsilon = 1e-5 fix_sus_i = n.storage_units.index[~ n.storage_units.p_nom_extendable] n.model.objective.expr += sum(n.epsilon * n.model.state_of_charge[su, n.snapshots[0]] for su in fix_sus_i) def add_battery_constraints(n): chargers = n.links.index[n.links.carrier.str.contains("battery charger") & n.links.p_nom_extendable] dischargers = chargers.str.replace("charger","discharger") link_p_nom = get_var(n, "Link", "p_nom") lhs = linexpr((1,link_p_nom[chargers]), (-n.links.loc[dischargers, "efficiency"].values, link_p_nom[dischargers].values)) define_constraints(n, lhs, "=", 0, 'Link', 'charger_ratio') def add_chp_constraints(n): electric_bool = (n.links.index.str.contains("urban central") & n.links.index.str.contains("CHP") & n.links.index.str.contains("electric")) heat_bool = (n.links.index.str.contains("urban central") & n.links.index.str.contains("CHP") & n.links.index.str.contains("heat")) electric = n.links.index[electric_bool] heat = n.links.index[heat_bool] electric_ext = n.links.index[electric_bool & n.links.p_nom_extendable] heat_ext = n.links.index[heat_bool & n.links.p_nom_extendable] electric_fix = n.links.index[electric_bool & ~n.links.p_nom_extendable] heat_fix = n.links.index[heat_bool & ~n.links.p_nom_extendable] if not electric_ext.empty: link_p_nom = get_var(n, "Link", "p_nom") #ratio of output heat to electricity set by p_nom_ratio lhs = linexpr((n.links.loc[electric_ext,"efficiency"] *n.links.loc[electric_ext,'p_nom_ratio'], link_p_nom[electric_ext]), (-n.links.loc[heat_ext,"efficiency"].values, link_p_nom[heat_ext].values)) define_constraints(n, lhs, "=", 0, 'chplink', 'fix_p_nom_ratio') if not electric.empty: link_p = get_var(n, "Link", "p") #backpressure lhs = linexpr((n.links.loc[electric,'c_b'].values *n.links.loc[heat,"efficiency"], link_p[heat]), (-n.links.loc[electric,"efficiency"].values, link_p[electric].values)) define_constraints(n, lhs, "<=", 0, 'chplink', 'backpressure') if not electric_ext.empty: link_p_nom = get_var(n, "Link", "p_nom") link_p = get_var(n, "Link", "p") #top_iso_fuel_line for extendable lhs = linexpr((1,link_p[heat_ext]), (1,link_p[electric_ext].values), (-1,link_p_nom[electric_ext].values)) define_constraints(n, lhs, "<=", 0, 'chplink', 'top_iso_fuel_line_ext') if not electric_fix.empty: link_p = get_var(n, "Link", "p") #top_iso_fuel_line for fixed lhs = linexpr((1,link_p[heat_fix]), (1,link_p[electric_fix].values)) define_constraints(n, lhs, "<=", n.links.loc[electric_fix,"p_nom"].values, 'chplink', 'top_iso_fuel_line_fix') def add_land_use_constraint(n): #warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind' for carrier in ['solar', 'onwind', 'offwind-ac', 'offwind-dc']: existing_capacities = n.generators.loc[n.generators.carrier==carrier,"p_nom"].groupby(n.generators.bus.map(n.buses.location)).sum() existing_capacities.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons n.generators.loc[existing_capacities.index,"p_nom_max"] -= existing_capacities n.generators.p_nom_max[n.generators.p_nom_max<0]=0. def extra_functionality(n, snapshots): #add_opts_constraints(n, opts) #add_eps_storage_constraint(n) add_chp_constraints(n) add_battery_constraints(n) def fix_branches(n, lines_s_nom=None, links_p_nom=None): if lines_s_nom is not None and len(lines_s_nom) > 0: n.lines.loc[lines_s_nom.index,"s_nom"] = lines_s_nom.values n.lines.loc[lines_s_nom.index,"s_nom_extendable"] = False if links_p_nom is not None and len(links_p_nom) > 0: n.links.loc[links_p_nom.index,"p_nom"] = links_p_nom.values n.links.loc[links_p_nom.index,"p_nom_extendable"] = False def solve_network(n, config=None, solver_log=None, opts=None): if config is None: config = snakemake.config['solving'] solve_opts = config['options'] solver_options = config['solver'].copy() if solver_log is None: solver_log = snakemake.log.solver solver_name = solver_options.pop('name') def run_lopf(n, allow_warning_status=False, fix_zero_lines=False, fix_ext_lines=False): free_output_series_dataframes(n) if fix_zero_lines: fix_lines_b = (n.lines.s_nom_opt == 0.) & n.lines.s_nom_extendable fix_links_b = (n.links.carrier=='DC') & (n.links.p_nom_opt == 0.) & n.links.p_nom_extendable fix_branches(n, lines_s_nom=pd.Series(0., n.lines.index[fix_lines_b]), links_p_nom=pd.Series(0., n.links.index[fix_links_b])) if fix_ext_lines: fix_branches(n, lines_s_nom=n.lines.loc[n.lines.s_nom_extendable, 's_nom_opt'], links_p_nom=n.links.loc[(n.links.carrier=='DC') & n.links.p_nom_extendable, 'p_nom_opt']) if "line_volume_constraint" in n.global_constraints.index: n.global_constraints.drop("line_volume_constraint",inplace=True) else: if "line_volume_constraint" not in n.global_constraints.index: line_volume = getattr(n, 'line_volume_limit', None) if line_volume is not None and not np.isinf(line_volume): n.add("GlobalConstraint", "line_volume_constraint", type="transmission_volume_expansion_limit", carrier_attribute="AC,DC", sense="<=", constant=line_volume) # Firing up solve will increase memory consumption tremendously, so # make sure we freed everything we can gc.collect() #from pyomo.opt import ProblemFormat #print("Saving model to MPS") #n.model.write('/home/ka/ka_iai/ka_kc5996/projects/pypsa-eur/128-B-I.mps', format=ProblemFormat.mps) #print("Model is saved to MPS") #sys.exit() status, termination_condition = n.lopf(pyomo=False, solver_name=solver_name, solver_logfile=solver_log, solver_options=solver_options, solver_dir=tmpdir, extra_functionality=extra_functionality, formulation=solve_opts['formulation']) #extra_postprocessing=extra_postprocessing #keep_files=True #free_memory={'pypsa'} assert status == "ok" or allow_warning_status and status == 'warning', \ ("network_lopf did abort with status={} " "and termination_condition={}" .format(status, termination_condition)) if not fix_ext_lines and "line_volume_constraint" in n.global_constraints.index: n.line_volume_limit_dual = n.global_constraints.at["line_volume_constraint","mu"] print("line volume limit dual:",n.line_volume_limit_dual) return status, termination_condition lines_ext_b = n.lines.s_nom_extendable if lines_ext_b.any(): # puh: ok, we need to iterate, since there is a relation # between s/p_nom and r, x for branches. msq_threshold = 0.01 lines = pd.DataFrame(n.lines[['r', 'x', 'type', 'num_parallel']]) lines['s_nom'] = ( np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) * n.lines.bus0.map(n.buses.v_nom) ).where(n.lines.type != '', n.lines['s_nom']) lines_ext_typed_b = (n.lines.type != '') & lines_ext_b lines_ext_untyped_b = (n.lines.type == '') & lines_ext_b def update_line_parameters(n, zero_lines_below=10, fix_zero_lines=False): if zero_lines_below > 0: n.lines.loc[n.lines.s_nom_opt < zero_lines_below, 's_nom_opt'] = 0. n.links.loc[(n.links.carrier=='DC') & (n.links.p_nom_opt < zero_lines_below), 'p_nom_opt'] = 0. if lines_ext_untyped_b.any(): for attr in ('r', 'x'): n.lines.loc[lines_ext_untyped_b, attr] = ( lines[attr].multiply(lines['s_nom']/n.lines['s_nom_opt']) ) if lines_ext_typed_b.any(): n.lines.loc[lines_ext_typed_b, 'num_parallel'] = ( n.lines['s_nom_opt']/lines['s_nom'] ) logger.debug("lines.num_parallel={}".format(n.lines.loc[lines_ext_typed_b, 'num_parallel'])) iteration = 1 lines['s_nom_opt'] = lines['s_nom'] * n.lines['num_parallel'].where(n.lines.type != '', 1.) status, termination_condition = run_lopf(n, allow_warning_status=True) def msq_diff(n): lines_err = np.sqrt(((n.lines['s_nom_opt'] - lines['s_nom_opt'])**2).mean())/lines['s_nom_opt'].mean() logger.info("Mean square difference after iteration {} is {}".format(iteration, lines_err)) return lines_err min_iterations = solve_opts.get('min_iterations', 2) max_iterations = solve_opts.get('max_iterations', 999) while msq_diff(n) > msq_threshold or iteration < min_iterations: if iteration >= max_iterations: logger.info("Iteration {} beyond max_iterations {}. Stopping ...".format(iteration, max_iterations)) break update_line_parameters(n) lines['s_nom_opt'] = n.lines['s_nom_opt'] iteration += 1 status, termination_condition = run_lopf(n, allow_warning_status=True) update_line_parameters(n, zero_lines_below=100) logger.info("Starting last run with fixed extendable lines") # Not really needed, could also be taken out # if 'snakemake' in globals(): # fn = os.path.basename(snakemake.output[0]) # n.export_to_netcdf('/home/vres/data/jonas/playground/pypsa-eur/' + fn) status, termination_condition = run_lopf(n, allow_warning_status=True, fix_ext_lines=True) # Drop zero lines from network # zero_lines_i = n.lines.index[(n.lines.s_nom_opt == 0.) & n.lines.s_nom_extendable] # if len(zero_lines_i): # n.mremove("Line", zero_lines_i) # zero_links_i = n.links.index[(n.links.p_nom_opt == 0.) & n.links.p_nom_extendable] # if len(zero_links_i): # n.mremove("Link", zero_links_i) return n if __name__ == "__main__": # Detect running outside of snakemake and mock snakemake for testing if 'snakemake' not in globals(): from helper import mock_snakemake snakemake = mock_snakemake('solve_network', network='elec', simpl='', clusters='37', lv='1.0', opts='', planning_horizons='2020', sector_opts='168H-T-H-B-I') tmpdir = snakemake.config['solving'].get('tmpdir') if tmpdir is not None: patch_pyomo_tmpdir(tmpdir) logging.basicConfig(filename=snakemake.log.python, level=snakemake.config['logging_level']) with memory_logger(filename=getattr(snakemake.log, 'memory', None), interval=30.) as mem: n = pypsa.Network(snakemake.input.network, override_component_attrs=override_component_attrs) n = prepare_network(n) n = solve_network(n) n.export_to_netcdf(snakemake.output[0]) logger.info("Maximum memory usage: {}".format(mem.mem_usage))