import numpy as np import pandas as pd #allow plotting without Xwindows import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from prepare_sector_network import co2_emissions_year #consolidate and rename def rename_techs(label): prefix_to_remove = ["residential ","services ","urban ","rural ","central ","decentral "] rename_if_contains = ["CHP","gas boiler","biogas","solar thermal","air heat pump","ground heat pump","resistive heater","Fischer-Tropsch"] rename_if_contains_dict = {"water tanks" : "hot water storage", "retrofitting" : "building retrofitting", "H2" : "hydrogen storage", "battery" : "battery storage", "CC" : "CC"} rename = {"solar" : "solar PV", "Sabatier" : "methanation", "offwind" : "offshore wind", "offwind-ac" : "offshore wind (AC)", "offwind-dc" : "offshore wind (DC)", "onwind" : "onshore wind", "ror" : "hydroelectricity", "hydro" : "hydroelectricity", "PHS" : "hydroelectricity", "co2 Store" : "DAC", "co2 stored" : "CO2 sequestration", "AC" : "transmission lines", "DC" : "transmission lines", "B2B" : "transmission lines"} for ptr in prefix_to_remove: if label[:len(ptr)] == ptr: label = label[len(ptr):] for rif in rename_if_contains: if rif in label: label = rif for old,new in rename_if_contains_dict.items(): if old in label: label = new for old,new in rename.items(): if old == label: label = new return label preferred_order = pd.Index(["transmission lines","hydroelectricity","hydro reservoir","run of river","pumped hydro storage","solid biomass","biogas","onshore wind","offshore wind","offshore wind (AC)","offshore wind (DC)","solar PV","solar thermal","solar","building retrofitting","ground heat pump","air heat pump","heat pump","resistive heater","power-to-heat","gas-to-power/heat","CHP","OCGT","gas boiler","gas","natural gas","helmeth","methanation","hydrogen storage","power-to-gas","power-to-liquid","battery storage","hot water storage","CO2 sequestration"]) def plot_costs(): cost_df = pd.read_csv(snakemake.input.costs,index_col=list(range(3)),header=list(range(n_header))) df = cost_df.groupby(cost_df.index.get_level_values(2)).sum() #convert to billions df = df/1e9 df = df.groupby(df.index.map(rename_techs)).sum() to_drop = df.index[df.max(axis=1) < snakemake.config['plotting']['costs_threshold']] print("dropping") print(df.loc[to_drop]) df = df.drop(to_drop) print(df.sum()) new_index = preferred_order.intersection(df.index).append(df.index.difference(preferred_order)) new_columns = df.sum().sort_values().index fig, ax = plt.subplots() fig.set_size_inches((12,8)) df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index]) handles,labels = ax.get_legend_handles_labels() handles.reverse() labels.reverse() ax.set_ylim([0,snakemake.config['plotting']['costs_max']]) ax.set_ylabel("System Cost [EUR billion per year]") ax.set_xlabel("") ax.grid(axis="y") ax.legend(handles,labels,ncol=4,loc="upper left") fig.tight_layout() fig.savefig(snakemake.output.costs,transparent=True) def plot_energy(): energy_df = pd.read_csv(snakemake.input.energy,index_col=list(range(2)),header=list(range(n_header))) df = energy_df.groupby(energy_df.index.get_level_values(1)).sum() #convert MWh to TWh df = df/1e6 df = df.groupby(df.index.map(rename_techs)).sum() to_drop = df.index[df.abs().max(axis=1) < snakemake.config['plotting']['energy_threshold']] print("dropping") print(df.loc[to_drop]) df = df.drop(to_drop) print(df.sum()) print(df) new_index = preferred_order.intersection(df.index).append(df.index.difference(preferred_order)) new_columns = df.columns.sort_values() #new_columns = df.sum().sort_values().index fig, ax = plt.subplots() fig.set_size_inches((12,8)) print(df.loc[new_index,new_columns]) df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index]) handles,labels = ax.get_legend_handles_labels() handles.reverse() labels.reverse() ax.set_ylim([snakemake.config['plotting']['energy_min'],snakemake.config['plotting']['energy_max']]) ax.set_ylabel("Energy [TWh/a]") ax.set_xlabel("") ax.grid(axis="y") ax.legend(handles,labels,ncol=4,loc="upper left") fig.tight_layout() fig.savefig(snakemake.output.energy,transparent=True) def plot_balances(): co2_carriers = ["co2","co2 stored","process emissions"] balances_df = pd.read_csv(snakemake.input.balances,index_col=list(range(3)),header=list(range(n_header))) balances = {i.replace(" ","_") : [i] for i in balances_df.index.levels[0]} balances["energy"] = [i for i in balances_df.index.levels[0] if i not in co2_carriers] for k,v in balances.items(): df = balances_df.loc[v] df = df.groupby(df.index.get_level_values(2)).sum() #convert MWh to TWh df = df/1e6 #remove trailing link ports df.index = [i[:-1] if ((i != "co2") and (i[-1:] in ["0","1","2","3"])) else i for i in df.index] df = df.groupby(df.index.map(rename_techs)).sum() to_drop = df.index[df.abs().max(axis=1) < snakemake.config['plotting']['energy_threshold']/10] print("dropping") print(df.loc[to_drop]) df = df.drop(to_drop) print(df.sum()) if df.empty: continue new_index = preferred_order.intersection(df.index).append(df.index.difference(preferred_order)) new_columns = df.columns.sort_values() fig, ax = plt.subplots() fig.set_size_inches((12,8)) df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index]) handles,labels = ax.get_legend_handles_labels() handles.reverse() labels.reverse() if v[0] in co2_carriers: ax.set_ylabel("CO2 [MtCO2/a]") else: ax.set_ylabel("Energy [TWh/a]") ax.set_xlabel("") ax.grid(axis="y") ax.legend(handles,labels,ncol=4,loc="upper left") fig.tight_layout() fig.savefig(snakemake.output.balances[:-10] + k + ".pdf",transparent=True) def historical_emissions(cts): """ read historical emissions to add them to the carbon budget plot """ #https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16 #downloaded 201228 (modified by EEA last on 201221) fn = "data/eea/UNFCCC_v23.csv" df = pd.read_csv(fn, encoding="latin-1") df.loc[df["Year"] == "1985-1987","Year"] = 1986 df["Year"] = df["Year"].astype(int) df = df.set_index(['Year', 'Sector_name', 'Country_code', 'Pollutant_name']).sort_index() e = pd.Series() e["electricity"] = '1.A.1.a - Public Electricity and Heat Production' e['residential non-elec'] = '1.A.4.b - Residential' e['services non-elec'] = '1.A.4.a - Commercial/Institutional' e['rail non-elec'] = "1.A.3.c - Railways" e["road non-elec"] = '1.A.3.b - Road Transportation' e["domestic navigation"] = "1.A.3.d - Domestic Navigation" e['international navigation'] = '1.D.1.b - International Navigation' e["domestic aviation"] = '1.A.3.a - Domestic Aviation' e["international aviation"] = '1.D.1.a - International Aviation' e['total energy'] = '1 - Energy' e['industrial processes'] = '2 - Industrial Processes and Product Use' e['agriculture'] = '3 - Agriculture' e['LULUCF'] = '4 - Land Use, Land-Use Change and Forestry' e['waste management'] = '5 - Waste management' e['other'] = '6 - Other Sector' e['indirect'] = 'ind_CO2 - Indirect CO2' e["total wL"] = "Total (with LULUCF)" e["total woL"] = "Total (without LULUCF)" pol = ["CO2"] # ["All greenhouse gases - (CO2 equivalent)"] cts if "GB" in cts: cts.remove("GB") cts.append("UK") year = np.arange(1990,2018).tolist() idx = pd.IndexSlice co2_totals = df.loc[idx[year,e.values,cts,pol],"emissions"].unstack("Year").rename(index=pd.Series(e.index,e.values)) co2_totals = (1/1e6)*co2_totals.groupby(level=0, axis=0).sum() #Gton CO2 co2_totals.loc['industrial non-elec'] = co2_totals.loc['total energy'] - co2_totals.loc[['electricity', 'services non-elec','residential non-elec', 'road non-elec', 'rail non-elec', 'domestic aviation', 'international aviation', 'domestic navigation', 'international navigation']].sum() emissions = co2_totals.loc["electricity"] if "T" in opts: emissions += co2_totals.loc[[i+ " non-elec" for i in ["rail","road"]]].sum() if "H" in opts: emissions += co2_totals.loc[[i+ " non-elec" for i in ["residential","services"]]].sum() if "I" in opts: emissions += co2_totals.loc[["industrial non-elec","industrial processes", "domestic aviation","international aviation", "domestic navigation","international navigation"]].sum() return emissions def plot_carbon_budget_distribution(): """ Plot historical carbon emissions in the EU and decarbonization path """ import matplotlib.gridspec as gridspec import seaborn as sns; sns.set() sns.set_style('ticks') plt.style.use('seaborn-ticks') plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' plt.rcParams['xtick.labelsize'] = 20 plt.rcParams['ytick.labelsize'] = 20 plt.figure(figsize=(10, 7)) gs1 = gridspec.GridSpec(1, 1) ax1 = plt.subplot(gs1[0,0]) ax1.set_ylabel('CO$_2$ emissions (Gt per year)',fontsize=22) ax1.set_ylim([0,5]) ax1.set_xlim([1990,snakemake.config['scenario']['planning_horizons'][-1]+1]) path_cb = snakemake.config['results_dir'] + snakemake.config['run'] + '/csvs/' countries=pd.read_csv(path_cb + 'countries.csv', index_col=1) cts=countries.index.to_list() e_1990 = co2_emissions_year(cts, opts, year=1990) CO2_CAP=pd.read_csv(path_cb + 'carbon_budget_distribution.csv', index_col=0) ax1.plot(e_1990*CO2_CAP[o],linewidth=3, color='dodgerblue', label=None) emissions = historical_emissions(cts) ax1.plot(emissions, color='black', linewidth=3, label=None) #plot commited and uder-discussion targets #(notice that historical emissions include all countries in the # network, but targets refer to EU) ax1.plot([2020],[0.8*emissions[1990]], marker='*', markersize=12, markerfacecolor='black', markeredgecolor='black') ax1.plot([2030],[0.45*emissions[1990]], marker='*', markersize=12, markerfacecolor='white', markeredgecolor='black') ax1.plot([2030],[0.6*emissions[1990]], marker='*', markersize=12, markerfacecolor='black', markeredgecolor='black') ax1.plot([2050, 2050],[x*emissions[1990] for x in [0.2, 0.05]], color='gray', linewidth=2, marker='_', alpha=0.5) ax1.plot([2050],[0.01*emissions[1990]], marker='*', markersize=12, markerfacecolor='white', linewidth=0, markeredgecolor='black', label='EU under-discussion target', zorder=10, clip_on=False) ax1.plot([2050],[0.125*emissions[1990]],'ro', marker='*', markersize=12, markerfacecolor='black', markeredgecolor='black', label='EU commited target') ax1.legend(fancybox=True, fontsize=18, loc=(0.01,0.01), facecolor='white', frameon=True) path_cb_plot = snakemake.config['results_dir'] + snakemake.config['run'] + '/graphs/' plt.savefig(path_cb_plot+'carbon_budget_plot.pdf', dpi=300) if __name__ == "__main__": # Detect running outside of snakemake and mock snakemake for testing if 'snakemake' not in globals(): from vresutils import Dict import yaml snakemake = Dict() with open('config.yaml', encoding='utf8') as f: snakemake.config = yaml.safe_load(f) snakemake.input = Dict() snakemake.output = Dict() snakemake.wildcards = Dict() #snakemake.wildcards['sector_opts']='3H-T-H-B-I-solar3-dist1-cb48be3' for item in ["costs", "energy"]: snakemake.input[item] = snakemake.config['summary_dir'] + '/{name}/csvs/{item}.csv'.format(name=snakemake.config['run'],item=item) snakemake.output[item] = snakemake.config['summary_dir'] + '/{name}/graphs/{item}.pdf'.format(name=snakemake.config['run'],item=item) snakemake.input["balances"] = snakemake.config['summary_dir'] + '/{name}/csvs/supply_energy.csv'.format(name=snakemake.config['run'],item=item) snakemake.output["balances"] = snakemake.config['summary_dir'] + '/{name}/graphs/balances-energy.csv'.format(name=snakemake.config['run'],item=item) n_header = 4 plot_costs() plot_energy() plot_balances() for sector_opts in snakemake.config['scenario']['sector_opts']: opts=sector_opts.split('-') for o in opts: if "cb" in o: plot_carbon_budget_distribution()