# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Creates plots from summary CSV files. """ import logging logger = logging.getLogger(__name__) import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np import pandas as pd plt.style.use("ggplot") from prepare_sector_network import co2_emissions_year # consolidate and rename def rename_techs(label): prefix_to_remove = [ "residential ", "services ", "urban ", "rural ", "central ", "decentral ", ] rename_if_contains = [ "CHP", "gas boiler", "biogas", "solar thermal", "air heat pump", "ground heat pump", "resistive heater", "Fischer-Tropsch", ] rename_if_contains_dict = { "water tanks": "hot water storage", "retrofitting": "building retrofitting", # "H2 Electrolysis": "hydrogen storage", # "H2 Fuel Cell": "hydrogen storage", # "H2 pipeline": "hydrogen storage", "battery": "battery storage", # "CC": "CC" } rename = { "solar": "solar PV", "Sabatier": "methanation", "offwind": "offshore wind", "offwind-ac": "offshore wind (AC)", "offwind-dc": "offshore wind (DC)", "onwind": "onshore wind", "ror": "hydroelectricity", "hydro": "hydroelectricity", "PHS": "hydroelectricity", "NH3": "ammonia", "co2 Store": "DAC", "co2 stored": "CO2 sequestration", "AC": "transmission lines", "DC": "transmission lines", "B2B": "transmission lines", } for ptr in prefix_to_remove: if label[: len(ptr)] == ptr: label = label[len(ptr) :] for rif in rename_if_contains: if rif in label: label = rif for old, new in rename_if_contains_dict.items(): if old in label: label = new for old, new in rename.items(): if old == label: label = new return label preferred_order = pd.Index( [ "transmission lines", "hydroelectricity", "hydro reservoir", "run of river", "pumped hydro storage", "solid biomass", "biogas", "onshore wind", "offshore wind", "offshore wind (AC)", "offshore wind (DC)", "solar PV", "solar thermal", "solar rooftop", "solar", "building retrofitting", "ground heat pump", "air heat pump", "heat pump", "resistive heater", "power-to-heat", "gas-to-power/heat", "CHP", "OCGT", "gas boiler", "gas", "natural gas", "helmeth", "methanation", "ammonia", "hydrogen storage", "power-to-gas", "power-to-liquid", "battery storage", "hot water storage", "CO2 sequestration", ] ) def plot_costs(): cost_df = pd.read_csv( snakemake.input.costs, index_col=list(range(3)), header=list(range(n_header)) ) df = cost_df.groupby(cost_df.index.get_level_values(2)).sum() # convert to billions df = df / 1e9 df = df.groupby(df.index.map(rename_techs)).sum() to_drop = df.index[df.max(axis=1) < snakemake.params.plotting["costs_threshold"]] logger.info( f"Dropping technology with costs below {snakemake.params['plotting']['costs_threshold']} EUR billion per year" ) logger.debug(df.loc[to_drop]) df = df.drop(to_drop) logger.info(f"Total system cost of {round(df.sum()[0])} EUR billion per year") new_index = preferred_order.intersection(df.index).append( df.index.difference(preferred_order) ) new_columns = df.sum().sort_values().index fig, ax = plt.subplots(figsize=(12, 8)) df.loc[new_index, new_columns].T.plot( kind="bar", ax=ax, stacked=True, color=[snakemake.params.plotting["tech_colors"][i] for i in new_index], ) handles, labels = ax.get_legend_handles_labels() handles.reverse() labels.reverse() ax.set_ylim([0, snakemake.params.plotting["costs_max"]]) ax.set_ylabel("System Cost [EUR billion per year]") ax.set_xlabel("") ax.grid(axis="x") ax.legend( handles, labels, ncol=1, loc="upper left", bbox_to_anchor=[1, 1], frameon=False ) fig.savefig(snakemake.output.costs, bbox_inches="tight") def plot_energy(): energy_df = pd.read_csv( snakemake.input.energy, index_col=list(range(2)), header=list(range(n_header)) ) df = energy_df.groupby(energy_df.index.get_level_values(1)).sum() # convert MWh to TWh df = df / 1e6 df = df.groupby(df.index.map(rename_techs)).sum() to_drop = df.index[ df.abs().max(axis=1) < snakemake.params.plotting["energy_threshold"] ] logger.info( f"Dropping all technology with energy consumption or production below {snakemake.params['plotting']['energy_threshold']} TWh/a" ) logger.debug(df.loc[to_drop]) df = df.drop(to_drop) logger.info(f"Total energy of {round(df.sum()[0])} TWh/a") new_index = preferred_order.intersection(df.index).append( df.index.difference(preferred_order) ) new_columns = df.columns.sort_values() fig, ax = plt.subplots(figsize=(12, 8)) logger.debug(df.loc[new_index, new_columns]) df.loc[new_index, new_columns].T.plot( kind="bar", ax=ax, stacked=True, color=[snakemake.params.plotting["tech_colors"][i] for i in new_index], ) handles, labels = ax.get_legend_handles_labels() handles.reverse() labels.reverse() ax.set_ylim( [ snakemake.params.plotting["energy_min"], snakemake.params.plotting["energy_max"], ] ) ax.set_ylabel("Energy [TWh/a]") ax.set_xlabel("") ax.grid(axis="x") ax.legend( handles, labels, ncol=1, loc="upper left", bbox_to_anchor=[1, 1], frameon=False ) fig.savefig(snakemake.output.energy, bbox_inches="tight") def plot_balances(): co2_carriers = ["co2", "co2 stored", "process emissions"] balances_df = pd.read_csv( snakemake.input.balances, index_col=list(range(3)), header=list(range(n_header)) ) balances = {i.replace(" ", "_"): [i] for i in balances_df.index.levels[0]} balances["energy"] = [ i for i in balances_df.index.levels[0] if i not in co2_carriers ] fig, ax = plt.subplots(figsize=(12, 8)) for k, v in balances.items(): df = balances_df.loc[v] df = df.groupby(df.index.get_level_values(2)).sum() # convert MWh to TWh df = df / 1e6 # remove trailing link ports df.index = [ i[:-1] if ((i not in ["co2", "NH3"]) and (i[-1:] in ["0", "1", "2", "3"])) else i for i in df.index ] df = df.groupby(df.index.map(rename_techs)).sum() to_drop = df.index[ df.abs().max(axis=1) < snakemake.params.plotting["energy_threshold"] / 10 ] if v[0] in co2_carriers: units = "MtCO2/a" else: units = "TWh/a" logger.debug( f"Dropping technology energy balance smaller than {snakemake.params['plotting']['energy_threshold']/10} {units}" ) logger.debug(df.loc[to_drop]) df = df.drop(to_drop) logger.debug(f"Total energy balance for {v} of {round(df.sum()[0],2)} {units}") if df.empty: continue new_index = preferred_order.intersection(df.index).append( df.index.difference(preferred_order) ) new_columns = df.columns.sort_values() df.loc[new_index, new_columns].T.plot( kind="bar", ax=ax, stacked=True, color=[snakemake.params.plotting["tech_colors"][i] for i in new_index], ) handles, labels = ax.get_legend_handles_labels() handles.reverse() labels.reverse() if v[0] in co2_carriers: ax.set_ylabel("CO2 [MtCO2/a]") else: ax.set_ylabel("Energy [TWh/a]") ax.set_xlabel("") ax.grid(axis="x") ax.legend( handles, labels, ncol=1, loc="upper left", bbox_to_anchor=[1, 1], frameon=False, ) fig.savefig(snakemake.output.balances[:-10] + k + ".pdf", bbox_inches="tight") plt.cla() def historical_emissions(countries): """ Read historical emissions to add them to the carbon budget plot. """ # https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16 # downloaded 201228 (modified by EEA last on 201221) fn = "data/eea/UNFCCC_v23.csv" df = pd.read_csv(fn, encoding="latin-1") df.loc[df["Year"] == "1985-1987", "Year"] = 1986 df["Year"] = df["Year"].astype(int) df = df.set_index( ["Year", "Sector_name", "Country_code", "Pollutant_name"] ).sort_index() e = pd.Series() e["electricity"] = "1.A.1.a - Public Electricity and Heat Production" e["residential non-elec"] = "1.A.4.b - Residential" e["services non-elec"] = "1.A.4.a - Commercial/Institutional" e["rail non-elec"] = "1.A.3.c - Railways" e["road non-elec"] = "1.A.3.b - Road Transportation" e["domestic navigation"] = "1.A.3.d - Domestic Navigation" e["international navigation"] = "1.D.1.b - International Navigation" e["domestic aviation"] = "1.A.3.a - Domestic Aviation" e["international aviation"] = "1.D.1.a - International Aviation" e["total energy"] = "1 - Energy" e["industrial processes"] = "2 - Industrial Processes and Product Use" e["agriculture"] = "3 - Agriculture" e["LULUCF"] = "4 - Land Use, Land-Use Change and Forestry" e["waste management"] = "5 - Waste management" e["other"] = "6 - Other Sector" e["indirect"] = "ind_CO2 - Indirect CO2" e["total wL"] = "Total (with LULUCF)" e["total woL"] = "Total (without LULUCF)" pol = ["CO2"] # ["All greenhouse gases - (CO2 equivalent)"] if "GB" in countries: countries.remove("GB") countries.append("UK") # Albania (AL) and Bosnia Herzegovina (BA), Montenegro (ME), Macedonia (MK) and Serbia (RS) # not included in eea historical emission dataset if "AL" in countries: countries.remove("AL") if "BA" in countries: countries.remove("BA") if "ME" in countries: countries.remove("ME") if "MK" in countries: countries.remove("MK") if "RS" in countries: countries.remove("RS") year = np.arange(1990, 2018).tolist() idx = pd.IndexSlice co2_totals = ( df.loc[idx[year, e.values, countries, pol], "emissions"] .unstack("Year") .rename(index=pd.Series(e.index, e.values)) ) co2_totals = (1 / 1e6) * co2_totals.groupby(level=0, axis=0).sum() # Gton CO2 co2_totals.loc["industrial non-elec"] = ( co2_totals.loc["total energy"] - co2_totals.loc[ [ "electricity", "services non-elec", "residential non-elec", "road non-elec", "rail non-elec", "domestic aviation", "international aviation", "domestic navigation", "international navigation", ] ].sum() ) emissions = co2_totals.loc["electricity"] if "T" in opts: emissions += co2_totals.loc[[i + " non-elec" for i in ["rail", "road"]]].sum() if "H" in opts: emissions += co2_totals.loc[ [i + " non-elec" for i in ["residential", "services"]] ].sum() if "I" in opts: emissions += co2_totals.loc[ [ "industrial non-elec", "industrial processes", "domestic aviation", "international aviation", "domestic navigation", "international navigation", ] ].sum() return emissions def plot_carbon_budget_distribution(input_eurostat): """ Plot historical carbon emissions in the EU and decarbonization path. """ import seaborn as sns sns.set() sns.set_style("ticks") plt.style.use("seaborn-ticks") plt.rcParams["xtick.direction"] = "in" plt.rcParams["ytick.direction"] = "in" plt.rcParams["xtick.labelsize"] = 20 plt.rcParams["ytick.labelsize"] = 20 plt.figure(figsize=(10, 7)) gs1 = gridspec.GridSpec(1, 1) ax1 = plt.subplot(gs1[0, 0]) ax1.set_ylabel("CO$_2$ emissions (Gt per year)", fontsize=22) ax1.set_ylim([0, 5]) ax1.set_xlim([1990, snakemake.params.planning_horizons[-1] + 1]) path_cb = "results/" + snakemake.params.RDIR + "csvs/" countries = snakemake.params.countries emissions_scope = snakemake.params.emissions_scope report_year = snakemake.params.eurostat_report_year input_co2 = snakemake.input.co2 e_1990 = co2_emissions_year(countries, input_eurostat, opts, emissions_scope, report_year, input_co2, year=1990) CO2_CAP = pd.read_csv(path_cb + "carbon_budget_distribution.csv", index_col=0) ax1.plot(e_1990 * CO2_CAP[o], linewidth=3, color="dodgerblue", label=None) emissions = historical_emissions(countries) ax1.plot(emissions, color="black", linewidth=3, label=None) # plot committed and uder-discussion targets # (notice that historical emissions include all countries in the # network, but targets refer to EU) ax1.plot( [2020], [0.8 * emissions[1990]], marker="*", markersize=12, markerfacecolor="black", markeredgecolor="black", ) ax1.plot( [2030], [0.45 * emissions[1990]], marker="*", markersize=12, markerfacecolor="white", markeredgecolor="black", ) ax1.plot( [2030], [0.6 * emissions[1990]], marker="*", markersize=12, markerfacecolor="black", markeredgecolor="black", ) ax1.plot( [2050, 2050], [x * emissions[1990] for x in [0.2, 0.05]], color="gray", linewidth=2, marker="_", alpha=0.5, ) ax1.plot( [2050], [0.01 * emissions[1990]], marker="*", markersize=12, markerfacecolor="white", linewidth=0, markeredgecolor="black", label="EU under-discussion target", zorder=10, clip_on=False, ) ax1.plot( [2050], [0.125 * emissions[1990]], "ro", marker="*", markersize=12, markerfacecolor="black", markeredgecolor="black", label="EU committed target", ) ax1.legend( fancybox=True, fontsize=18, loc=(0.01, 0.01), facecolor="white", frameon=True ) path_cb_plot = "results/" + snakemake.params.RDIR + "/graphs/" plt.savefig(path_cb_plot + "carbon_budget_plot.pdf", dpi=300) if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake("plot_summary") logging.basicConfig(level=snakemake.config["logging"]["level"]) n_header = 4 plot_costs() plot_energy() plot_balances() for sector_opts in snakemake.params.sector_opts: opts = sector_opts.split("-") for o in opts: if "cb" in o: plot_carbon_budget_distribution(snakemake.input.eurostat)