# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT # coding: utf-8 """ Creates the network topology from a `ENTSO-E map extract. `_ (March 2022) as a PyPSA network. Relevant Settings ----------------- .. code:: yaml countries: electricity: voltages: lines: types: s_max_pu: under_construction: links: p_max_pu: under_construction: include_tyndp: transformers: x: s_nom: type: .. seealso:: Documentation of the configuration file ``config/config.yaml`` at :ref:`snapshots_cf`, :ref:`toplevel_cf`, :ref:`electricity_cf`, :ref:`load_cf`, :ref:`lines_cf`, :ref:`links_cf`, :ref:`transformers_cf` Inputs ------ - ``data/entsoegridkit``: Extract from the geographical vector data of the online `ENTSO-E Interactive Map `_ by the `GridKit `_ toolkit dating back to March 2022. - ``data/parameter_corrections.yaml``: Corrections for ``data/entsoegridkit`` - ``data/links_p_nom.csv``: confer :ref:`links` - ``data/links_tyndp.csv``: List of projects in the `TYNDP 2018 `_ that are at least *in permitting* with fields for start- and endpoint (names and coordinates), length, capacity, construction status, and project reference ID. - ``resources/country_shapes.geojson``: confer :ref:`shapes` - ``resources/offshore_shapes.geojson``: confer :ref:`shapes` - ``resources/europe_shape.geojson``: confer :ref:`shapes` Outputs ------- - ``networks/base.nc`` .. image:: img/base.png :scale: 33 % Description ----------- """ import logging from itertools import product import geopandas as gpd import networkx as nx import numpy as np import pandas as pd import pypsa import shapely import shapely.prepared import shapely.wkt import yaml from _helpers import configure_logging, set_scenario_config from packaging.version import Version, parse from scipy import spatial from scipy.sparse import csgraph from shapely.geometry import LineString, Point PD_GE_2_2 = parse(pd.__version__) >= Version("2.2") logger = logging.getLogger(__name__) def _get_oid(df): if "tags" in df.columns: return df.tags.str.extract('"oid"=>"(\d+)"', expand=False) else: return pd.Series(np.nan, df.index) def _get_country(df): if "tags" in df.columns: return df.tags.str.extract('"country"=>"([A-Z]{2})"', expand=False) else: return pd.Series(np.nan, df.index) def _find_closest_links(links, new_links, distance_upper_bound=1.5): treecoords = np.asarray( [ np.asarray(shapely.wkt.loads(s).coords)[[0, -1]].flatten() for s in links.geometry ] ) querycoords = np.vstack( [new_links[["x1", "y1", "x2", "y2"]], new_links[["x2", "y2", "x1", "y1"]]] ) tree = spatial.KDTree(treecoords) dist, ind = tree.query(querycoords, distance_upper_bound=distance_upper_bound) found_b = ind < len(links) found_i = np.arange(len(new_links) * 2)[found_b] % len(new_links) return ( pd.DataFrame( dict(D=dist[found_b], i=links.index[ind[found_b] % len(links)]), index=new_links.index[found_i], ) .sort_values(by="D")[lambda ds: ~ds.index.duplicated(keep="first")] .sort_index()["i"] ) def _load_buses_from_eg(eg_buses, europe_shape, config_elec): buses = ( pd.read_csv( eg_buses, quotechar="'", true_values=["t"], false_values=["f"], dtype=dict(bus_id="str"), ) .set_index("bus_id") .drop(["station_id"], axis=1) .rename(columns=dict(voltage="v_nom")) ) buses["carrier"] = buses.pop("dc").map({True: "DC", False: "AC"}) buses["under_construction"] = buses.under_construction.where( lambda s: s.notnull(), False ).astype(bool) # remove all buses outside of all countries including exclusive economic zones (offshore) europe_shape = gpd.read_file(europe_shape).loc[0, "geometry"] europe_shape_prepped = shapely.prepared.prep(europe_shape) buses_in_europe_b = buses[["x", "y"]].apply( lambda p: europe_shape_prepped.contains(Point(p)), axis=1 ) buses_with_v_nom_to_keep_b = ( buses.v_nom.isin(config_elec["voltages"]) | buses.v_nom.isnull() ) logger.info( f'Removing buses with voltages {pd.Index(buses.v_nom.unique()).dropna().difference(config_elec["voltages"])}' ) return pd.DataFrame(buses.loc[buses_in_europe_b & buses_with_v_nom_to_keep_b]) def _load_transformers_from_eg(buses, eg_transformers): transformers = pd.read_csv( eg_transformers, quotechar="'", true_values=["t"], false_values=["f"], dtype=dict(transformer_id="str", bus0="str", bus1="str"), ).set_index("transformer_id") transformers = _remove_dangling_branches(transformers, buses) return transformers def _load_converters_from_eg(buses, eg_converters): converters = pd.read_csv( eg_converters, quotechar="'", true_values=["t"], false_values=["f"], dtype=dict(converter_id="str", bus0="str", bus1="str"), ).set_index("converter_id") converters = _remove_dangling_branches(converters, buses) converters["carrier"] = "B2B" return converters def _load_links_from_eg(buses, eg_links): links = pd.read_csv( eg_links, quotechar="'", true_values=["t"], false_values=["f"], dtype=dict(link_id="str", bus0="str", bus1="str", under_construction="bool"), ).set_index("link_id") links["length"] /= 1e3 # Skagerrak Link is connected to 132kV bus which is removed in _load_buses_from_eg. # Connect to neighboring 380kV bus links.loc[links.bus1 == "6396", "bus1"] = "6398" links = _remove_dangling_branches(links, buses) # Add DC line parameters links["carrier"] = "DC" return links def _add_links_from_tyndp(buses, links, links_tyndp, europe_shape): links_tyndp = pd.read_csv(links_tyndp) # remove all links from list which lie outside all of the desired countries europe_shape = gpd.read_file(europe_shape).loc[0, "geometry"] europe_shape_prepped = shapely.prepared.prep(europe_shape) x1y1_in_europe_b = links_tyndp[["x1", "y1"]].apply( lambda p: europe_shape_prepped.contains(Point(p)), axis=1 ) x2y2_in_europe_b = links_tyndp[["x2", "y2"]].apply( lambda p: europe_shape_prepped.contains(Point(p)), axis=1 ) is_within_covered_countries_b = x1y1_in_europe_b & x2y2_in_europe_b if not is_within_covered_countries_b.all(): logger.info( "TYNDP links outside of the covered area (skipping): " + ", ".join(links_tyndp.loc[~is_within_covered_countries_b, "Name"]) ) links_tyndp = links_tyndp.loc[is_within_covered_countries_b] if links_tyndp.empty: return buses, links has_replaces_b = links_tyndp.replaces.notnull() oids = dict(Bus=_get_oid(buses), Link=_get_oid(links)) keep_b = dict( Bus=pd.Series(True, index=buses.index), Link=pd.Series(True, index=links.index) ) for reps in links_tyndp.loc[has_replaces_b, "replaces"]: for comps in reps.split(":"): oids_to_remove = comps.split(".") c = oids_to_remove.pop(0) keep_b[c] &= ~oids[c].isin(oids_to_remove) buses = buses.loc[keep_b["Bus"]] links = links.loc[keep_b["Link"]] links_tyndp["j"] = _find_closest_links( links, links_tyndp, distance_upper_bound=0.20 ) # Corresponds approximately to 20km tolerances if links_tyndp["j"].notnull().any(): logger.info( "TYNDP links already in the dataset (skipping): " + ", ".join(links_tyndp.loc[links_tyndp["j"].notnull(), "Name"]) ) links_tyndp = links_tyndp.loc[links_tyndp["j"].isnull()] if links_tyndp.empty: return buses, links tree = spatial.KDTree(buses[["x", "y"]]) _, ind0 = tree.query(links_tyndp[["x1", "y1"]]) ind0_b = ind0 < len(buses) links_tyndp.loc[ind0_b, "bus0"] = buses.index[ind0[ind0_b]] _, ind1 = tree.query(links_tyndp[["x2", "y2"]]) ind1_b = ind1 < len(buses) links_tyndp.loc[ind1_b, "bus1"] = buses.index[ind1[ind1_b]] links_tyndp_located_b = ( links_tyndp["bus0"].notnull() & links_tyndp["bus1"].notnull() ) if not links_tyndp_located_b.all(): logger.warning( "Did not find connected buses for TYNDP links (skipping): " + ", ".join(links_tyndp.loc[~links_tyndp_located_b, "Name"]) ) links_tyndp = links_tyndp.loc[links_tyndp_located_b] logger.info("Adding the following TYNDP links: " + ", ".join(links_tyndp["Name"])) links_tyndp = links_tyndp[["bus0", "bus1"]].assign( carrier="DC", p_nom=links_tyndp["Power (MW)"], length=links_tyndp["Length (given) (km)"].fillna( links_tyndp["Length (distance*1.2) (km)"] ), under_construction=True, underground=False, geometry=( links_tyndp[["x1", "y1", "x2", "y2"]].apply( lambda s: str(LineString([[s.x1, s.y1], [s.x2, s.y2]])), axis=1 ) ), tags=( '"name"=>"' + links_tyndp["Name"] + '", ' + '"ref"=>"' + links_tyndp["Ref"] + '", ' + '"status"=>"' + links_tyndp["status"] + '"' ), ) links_tyndp.index = "T" + links_tyndp.index.astype(str) links = pd.concat([links, links_tyndp], sort=True) return buses, links def _load_lines_from_eg(buses, eg_lines): lines = ( pd.read_csv( eg_lines, quotechar="'", true_values=["t"], false_values=["f"], dtype=dict( line_id="str", bus0="str", bus1="str", underground="bool", under_construction="bool", ), ) .set_index("line_id") .rename(columns=dict(voltage="v_nom", circuits="num_parallel")) ) lines["length"] /= 1e3 lines["carrier"] = "AC" lines = _remove_dangling_branches(lines, buses) return lines def _apply_parameter_corrections(n, parameter_corrections): with open(parameter_corrections) as f: corrections = yaml.safe_load(f) if corrections is None: return for component, attrs in corrections.items(): df = n.df(component) oid = _get_oid(df) if attrs is None: continue for attr, repls in attrs.items(): for i, r in repls.items(): if i == "oid": r = oid.map(repls["oid"]).dropna() elif i == "index": r = pd.Series(repls["index"]) else: raise NotImplementedError() inds = r.index.intersection(df.index) df.loc[inds, attr] = r[inds].astype(df[attr].dtype) def _reconnect_crimea(lines): logger.info("Reconnecting Crimea to the Ukrainian grid.") lines_to_crimea = pd.DataFrame( { "bus0": ["3065", "3181", "3181"], "bus1": ["3057", "3055", "3057"], "v_nom": [300, 300, 300], "num_parallel": [1, 1, 1], "length": [140, 120, 140], "carrier": ["AC", "AC", "AC"], "underground": [False, False, False], "under_construction": [False, False, False], }, index=["Melitopol", "Liubymivka left", "Luibymivka right"], ) return pd.concat([lines, lines_to_crimea]) def _set_electrical_parameters_lines(lines, config): v_noms = config["electricity"]["voltages"] linetypes = config["lines"]["types"] for v_nom in v_noms: lines.loc[lines["v_nom"] == v_nom, "type"] = linetypes[v_nom] lines["s_max_pu"] = config["lines"]["s_max_pu"] return lines def _set_lines_s_nom_from_linetypes(n): n.lines["s_nom"] = ( np.sqrt(3) * n.lines["type"].map(n.line_types.i_nom) * n.lines["v_nom"] * n.lines.num_parallel ) def _set_electrical_parameters_links(links, config, links_p_nom): if links.empty: return links p_max_pu = config["links"].get("p_max_pu", 1.0) links["p_max_pu"] = p_max_pu links["p_min_pu"] = -p_max_pu links_p_nom = pd.read_csv(links_p_nom) # filter links that are not in operation anymore removed_b = links_p_nom.Remarks.str.contains("Shut down|Replaced", na=False) links_p_nom = links_p_nom[~removed_b] # find closest link for all links in links_p_nom links_p_nom["j"] = _find_closest_links(links, links_p_nom) links_p_nom = links_p_nom.groupby(["j"], as_index=False).agg({"Power (MW)": "sum"}) p_nom = links_p_nom.dropna(subset=["j"]).set_index("j")["Power (MW)"] # Don't update p_nom if it's already set p_nom_unset = ( p_nom.drop(links.index[links.p_nom.notnull()], errors="ignore") if "p_nom" in links else p_nom ) links.loc[p_nom_unset.index, "p_nom"] = p_nom_unset return links def _set_electrical_parameters_converters(converters, config): p_max_pu = config["links"].get("p_max_pu", 1.0) converters["p_max_pu"] = p_max_pu converters["p_min_pu"] = -p_max_pu converters["p_nom"] = 2000 # Converters are combined with links converters["under_construction"] = False converters["underground"] = False return converters def _set_electrical_parameters_transformers(transformers, config): config = config["transformers"] ## Add transformer parameters transformers["x"] = config.get("x", 0.1) transformers["s_nom"] = config.get("s_nom", 2000) transformers["type"] = config.get("type", "") return transformers def _remove_dangling_branches(branches, buses): return pd.DataFrame( branches.loc[branches.bus0.isin(buses.index) & branches.bus1.isin(buses.index)] ) def _remove_unconnected_components(network, threshold=6): _, labels = csgraph.connected_components(network.adjacency_matrix(), directed=False) component = pd.Series(labels, index=network.buses.index) component_sizes = component.value_counts() components_to_remove = component_sizes.loc[component_sizes < threshold] logger.info( f"Removing {len(components_to_remove)} unconnected network components with less than {components_to_remove.max()} buses. In total {components_to_remove.sum()} buses." ) return network[component == component_sizes.index[0]] def _set_countries_and_substations(n, config, country_shapes, offshore_shapes): buses = n.buses def buses_in_shape(shape): shape = shapely.prepared.prep(shape) return pd.Series( np.fromiter( ( shape.contains(Point(x, y)) for x, y in buses.loc[:, ["x", "y"]].values ), dtype=bool, count=len(buses), ), index=buses.index, ) countries = config["countries"] country_shapes = gpd.read_file(country_shapes).set_index("name")["geometry"] # reindexing necessary for supporting empty geo-dataframes offshore_shapes = gpd.read_file(offshore_shapes) offshore_shapes = offshore_shapes.reindex(columns=["name", "geometry"]).set_index( "name" )["geometry"] substation_b = buses["symbol"].str.contains( "substation|converter station", case=False ) def prefer_voltage(x, which): index = x.index if len(index) == 1: return pd.Series(index, index) key = ( x.index[0] if x["v_nom"].isnull().all() else getattr(x["v_nom"], "idx" + which)() ) return pd.Series(key, index) compat_kws = dict(include_groups=False) if PD_GE_2_2 else {} gb = buses.loc[substation_b].groupby( ["x", "y"], as_index=False, group_keys=False, sort=False ) bus_map_low = gb.apply(prefer_voltage, "min", **compat_kws) lv_b = (bus_map_low == bus_map_low.index).reindex(buses.index, fill_value=False) bus_map_high = gb.apply(prefer_voltage, "max", **compat_kws) hv_b = (bus_map_high == bus_map_high.index).reindex(buses.index, fill_value=False) onshore_b = pd.Series(False, buses.index) offshore_b = pd.Series(False, buses.index) for country in countries: onshore_shape = country_shapes[country] onshore_country_b = buses_in_shape(onshore_shape) onshore_b |= onshore_country_b buses.loc[onshore_country_b, "country"] = country if country not in offshore_shapes.index: continue offshore_country_b = buses_in_shape(offshore_shapes[country]) offshore_b |= offshore_country_b buses.loc[offshore_country_b, "country"] = country # Only accept buses as low-voltage substations (where load is attached), if # they have at least one connection which is not under_construction has_connections_b = pd.Series(False, index=buses.index) for b, df in product(("bus0", "bus1"), (n.lines, n.links)): has_connections_b |= ~df.groupby(b).under_construction.min() buses["onshore_bus"] = onshore_b buses["substation_lv"] = ( lv_b & onshore_b & (~buses["under_construction"]) & has_connections_b ) buses["substation_off"] = (offshore_b | (hv_b & onshore_b)) & ( ~buses["under_construction"] ) c_nan_b = buses.country.fillna("na") == "na" if c_nan_b.sum() > 0: c_tag = _get_country(buses.loc[c_nan_b]) c_tag.loc[~c_tag.isin(countries)] = np.nan n.buses.loc[c_nan_b, "country"] = c_tag c_tag_nan_b = n.buses.country.isnull() # Nearest country in path length defines country of still homeless buses # Work-around until commit 705119 lands in pypsa release n.transformers["length"] = 0.0 graph = n.graph(weight="length") n.transformers.drop("length", axis=1, inplace=True) for b in n.buses.index[c_tag_nan_b]: df = ( pd.DataFrame( dict( pathlength=nx.single_source_dijkstra_path_length( graph, b, cutoff=200 ) ) ) .join(n.buses.country) .dropna() ) assert ( not df.empty ), "No buses with defined country within 200km of bus `{}`".format(b) n.buses.at[b, "country"] = df.loc[df.pathlength.idxmin(), "country"] logger.warning( "{} buses are not in any country or offshore shape," " {} have been assigned from the tag of the entsoe map," " the rest from the next bus in terms of pathlength.".format( c_nan_b.sum(), c_nan_b.sum() - c_tag_nan_b.sum() ) ) return buses def _replace_b2b_converter_at_country_border_by_link(n): # Affects only the B2B converter in Lithuania at the Polish border at the moment buscntry = n.buses.country linkcntry = n.links.bus0.map(buscntry) converters_i = n.links.index[ (n.links.carrier == "B2B") & (linkcntry == n.links.bus1.map(buscntry)) ] def findforeignbus(G, i): cntry = linkcntry.at[i] for busattr in ("bus0", "bus1"): b0 = n.links.at[i, busattr] for b1 in G[b0]: if buscntry[b1] != cntry: return busattr, b0, b1 return None, None, None for i in converters_i: G = n.graph() busattr, b0, b1 = findforeignbus(G, i) if busattr is not None: comp, line = next(iter(G[b0][b1])) if comp != "Line": logger.warning( "Unable to replace B2B `{}` expected a Line, but found a {}".format( i, comp ) ) continue n.links.at[i, busattr] = b1 n.links.at[i, "p_nom"] = min( n.links.at[i, "p_nom"], n.lines.at[line, "s_nom"] ) n.links.at[i, "carrier"] = "DC" n.links.at[i, "underwater_fraction"] = 0.0 n.links.at[i, "length"] = n.lines.at[line, "length"] n.remove("Line", line) n.remove("Bus", b0) logger.info( "Replacing B2B converter `{}` together with bus `{}` and line `{}` by an HVDC tie-line {}-{}".format( i, b0, line, linkcntry.at[i], buscntry.at[b1] ) ) def _set_links_underwater_fraction(n, offshore_shapes): if n.links.empty: return if not hasattr(n.links, "geometry"): n.links["underwater_fraction"] = 0.0 else: offshore_shape = gpd.read_file(offshore_shapes).unary_union links = gpd.GeoSeries(n.links.geometry.dropna().map(shapely.wkt.loads)) n.links["underwater_fraction"] = ( links.intersection(offshore_shape).length / links.length ) def _adjust_capacities_of_under_construction_branches(n, config): lines_mode = config["lines"].get("under_construction", "undef") if lines_mode == "zero": n.lines.loc[n.lines.under_construction, "num_parallel"] = 0.0 n.lines.loc[n.lines.under_construction, "s_nom"] = 0.0 elif lines_mode == "remove": n.mremove("Line", n.lines.index[n.lines.under_construction]) elif lines_mode != "keep": logger.warning( "Unrecognized configuration for `lines: under_construction` = `{}`. Keeping under construction lines." ) links_mode = config["links"].get("under_construction", "undef") if links_mode == "zero": n.links.loc[n.links.under_construction, "p_nom"] = 0.0 elif links_mode == "remove": n.mremove("Link", n.links.index[n.links.under_construction]) elif links_mode != "keep": logger.warning( "Unrecognized configuration for `links: under_construction` = `{}`. Keeping under construction links." ) if lines_mode == "remove" or links_mode == "remove": # We might need to remove further unconnected components n = _remove_unconnected_components(n) return n def base_network( eg_buses, eg_converters, eg_transformers, eg_lines, eg_links, links_p_nom, links_tyndp, europe_shape, country_shapes, offshore_shapes, parameter_corrections, config, ): buses = _load_buses_from_eg(eg_buses, europe_shape, config["electricity"]) links = _load_links_from_eg(buses, eg_links) if config["links"].get("include_tyndp"): buses, links = _add_links_from_tyndp(buses, links, links_tyndp, europe_shape) converters = _load_converters_from_eg(buses, eg_converters) lines = _load_lines_from_eg(buses, eg_lines) transformers = _load_transformers_from_eg(buses, eg_transformers) if config["lines"].get("reconnect_crimea", True) and "UA" in config["countries"]: lines = _reconnect_crimea(lines) lines = _set_electrical_parameters_lines(lines, config) transformers = _set_electrical_parameters_transformers(transformers, config) links = _set_electrical_parameters_links(links, config, links_p_nom) converters = _set_electrical_parameters_converters(converters, config) snapshots = snakemake.params.snapshots n = pypsa.Network() n.name = "PyPSA-Eur" n.set_snapshots(pd.date_range(freq="h", **snapshots)) n.madd("Carrier", ["AC", "DC"]) n.import_components_from_dataframe(buses, "Bus") n.import_components_from_dataframe(lines, "Line") n.import_components_from_dataframe(transformers, "Transformer") n.import_components_from_dataframe(links, "Link") n.import_components_from_dataframe(converters, "Link") _set_lines_s_nom_from_linetypes(n) _apply_parameter_corrections(n, parameter_corrections) n = _remove_unconnected_components(n) _set_countries_and_substations(n, config, country_shapes, offshore_shapes) _set_links_underwater_fraction(n, offshore_shapes) _replace_b2b_converter_at_country_border_by_link(n) n = _adjust_capacities_of_under_construction_branches(n, config) return n if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake("base_network") configure_logging(snakemake) set_scenario_config(snakemake) n = base_network( snakemake.input.eg_buses, snakemake.input.eg_converters, snakemake.input.eg_transformers, snakemake.input.eg_lines, snakemake.input.eg_links, snakemake.input.links_p_nom, snakemake.input.links_tyndp, snakemake.input.europe_shape, snakemake.input.country_shapes, snakemake.input.offshore_shapes, snakemake.input.parameter_corrections, snakemake.config, ) n.meta = snakemake.config n.export_to_netcdf(snakemake.output[0])