# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Distribute country-level energy demands by population. """ import pandas as pd from _helpers import set_scenario_config if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake( "build_population_weighted_energy_totals", kind="heat", simpl="", clusters=60, ) set_scenario_config(snakemake) config = snakemake.config["energy"] if snakemake.wildcards.kind == "heat": years = pd.date_range(freq="h", **snakemake.params.snapshots).year.unique() assert len(years) == 1, "Currently only works for single year." data_year = years[0] else: data_year = int(config["energy_totals_year"]) pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0) totals = pd.read_csv(snakemake.input.energy_totals, index_col=[0, 1]) totals = totals.xs(data_year, level="year") nodal_totals = totals.loc[pop_layout.ct].fillna(0.0) nodal_totals.index = pop_layout.index nodal_totals = nodal_totals.multiply(pop_layout.fraction, axis=0) nodal_totals.to_csv(snakemake.output[0])