# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT # coding: utf-8 """ Lifts electrical transmission network to a single 380 kV voltage layer, removes dead-ends of the network, and reduces multi-hop HVDC connections to a single link. Relevant Settings ----------------- .. code:: yaml clustering: simplify_network: cluster_network: aggregation_strategies: costs: year: version: fill_values: marginal_cost: capital_cost: electricity: max_hours: lines: length_factor: links: p_max_pu: solving: solver: name: .. seealso:: Documentation of the configuration file ``config.yaml`` at :ref:`costs_cf`, :ref:`electricity_cf`, :ref:`renewable_cf`, :ref:`lines_cf`, :ref:`links_cf`, :ref:`solving_cf` Inputs ------ - ``resources/costs.csv``: The database of cost assumptions for all included technologies for specific years from various sources; e.g. discount rate, lifetime, investment (CAPEX), fixed operation and maintenance (FOM), variable operation and maintenance (VOM), fuel costs, efficiency, carbon-dioxide intensity. - ``resources/regions_onshore.geojson``: confer :ref:`busregions` - ``resources/regions_offshore.geojson``: confer :ref:`busregions` - ``networks/elec.nc``: confer :ref:`electricity` Outputs ------- - ``resources/regions_onshore_elec_s{simpl}.geojson``: .. image:: ../img/regions_onshore_elec_s.png :scale: 33 % - ``resources/regions_offshore_elec_s{simpl}.geojson``: .. image:: ../img/regions_offshore_elec_s .png :scale: 33 % - ``resources/busmap_elec_s{simpl}.csv``: Mapping of buses from ``networks/elec.nc`` to ``networks/elec_s{simpl}.nc``; - ``networks/elec_s{simpl}.nc``: .. image:: ../img/elec_s.png :scale: 33 % Description ----------- The rule :mod:`simplify_network` does up to four things: 1. Create an equivalent transmission network in which all voltage levels are mapped to the 380 kV level by the function ``simplify_network(...)``. 2. DC only sub-networks that are connected at only two buses to the AC network are reduced to a single representative link in the function ``simplify_links(...)``. The components attached to buses in between are moved to the nearest endpoint. The grid connection cost of offshore wind generators are added to the captial costs of the generator. 3. Stub lines and links, i.e. dead-ends of the network, are sequentially removed from the network in the function ``remove_stubs(...)``. Components are moved along. 4. Optionally, if an integer were provided for the wildcard ``{simpl}`` (e.g. ``networks/elec_s500.nc``), the network is clustered to this number of clusters with the routines from the ``cluster_network`` rule with the function ``cluster_network.cluster(...)``. This step is usually skipped! """ import logging from _helpers import configure_logging, update_p_nom_max, get_aggregation_strategies from cluster_network import clustering_for_n_clusters, cluster_regions from add_electricity import load_costs import pandas as pd import numpy as np import scipy as sp from scipy.sparse.csgraph import connected_components, dijkstra from functools import reduce import pypsa from pypsa.io import import_components_from_dataframe, import_series_from_dataframe from pypsa.networkclustering import busmap_by_stubs, aggregategenerators, aggregateoneport, get_clustering_from_busmap logger = logging.getLogger(__name__) def simplify_network_to_380(n): """ Fix all lines to a voltage level of 380 kV and remove all transformers. The function preserves the transmission capacity for each line while updating its voltage level, line type and number of parallel bundles (num_parallel). Transformers are removed and connected components are moved from their starting bus to their ending bus. The corresponing starting buses are removed as well. """ logger.info("Mapping all network lines onto a single 380kV layer") n.buses['v_nom'] = 380. linetype_380, = n.lines.loc[n.lines.v_nom == 380., 'type'].unique() n.lines['type'] = linetype_380 n.lines["v_nom"] = 380 n.lines["i_nom"] = n.line_types.i_nom[linetype_380] n.lines['num_parallel'] = n.lines.eval("s_nom / (sqrt(3) * v_nom * i_nom)") trafo_map = pd.Series(n.transformers.bus1.values, n.transformers.bus0.values) trafo_map = trafo_map[~trafo_map.index.duplicated(keep='first')] several_trafo_b = trafo_map.isin(trafo_map.index) trafo_map[several_trafo_b] = trafo_map[several_trafo_b].map(trafo_map) missing_buses_i = n.buses.index.difference(trafo_map.index) missing = pd.Series(missing_buses_i, missing_buses_i) trafo_map = pd.concat([trafo_map, missing]) for c in n.one_port_components|n.branch_components: df = n.df(c) for col in df.columns: if col.startswith('bus'): df[col] = df[col].map(trafo_map) n.mremove("Transformer", n.transformers.index) n.mremove("Bus", n.buses.index.difference(trafo_map)) return n, trafo_map def _prepare_connection_costs_per_link(n, costs, config): if n.links.empty: return {} connection_costs_per_link = {} for tech in config['renewable']: if tech.startswith('offwind'): connection_costs_per_link[tech] = ( n.links.length * config['lines']['length_factor'] * (n.links.underwater_fraction * costs.at[tech + '-connection-submarine', 'capital_cost'] + (1. - n.links.underwater_fraction) * costs.at[tech + '-connection-underground', 'capital_cost']) ) return connection_costs_per_link def _compute_connection_costs_to_bus(n, busmap, costs, config, connection_costs_per_link=None, buses=None): if connection_costs_per_link is None: connection_costs_per_link = _prepare_connection_costs_per_link(n, costs, config) if buses is None: buses = busmap.index[busmap.index != busmap.values] connection_costs_to_bus = pd.DataFrame(index=buses) for tech in connection_costs_per_link: adj = n.adjacency_matrix(weights=pd.concat(dict(Link=connection_costs_per_link[tech].reindex(n.links.index), Line=pd.Series(0., n.lines.index)))) costs_between_buses = dijkstra(adj, directed=False, indices=n.buses.index.get_indexer(buses)) connection_costs_to_bus[tech] = costs_between_buses[np.arange(len(buses)), n.buses.index.get_indexer(busmap.loc[buses])] return connection_costs_to_bus def _adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus, output): connection_costs = {} for tech in connection_costs_to_bus: tech_b = n.generators.carrier == tech costs = n.generators.loc[tech_b, "bus"].map(connection_costs_to_bus[tech]).loc[lambda s: s>0] if not costs.empty: n.generators.loc[costs.index, "capital_cost"] += costs logger.info("Displacing {} generator(s) and adding connection costs to capital_costs: {} " .format(tech, ", ".join("{:.0f} Eur/MW/a for `{}`".format(d, b) for b, d in costs.iteritems()))) connection_costs[tech] = costs pd.DataFrame(connection_costs).to_csv(output.connection_costs) def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, output, aggregate_one_ports={"Load", "StorageUnit"}, aggregation_strategies=dict()): def replace_components(n, c, df, pnl): n.mremove(c, n.df(c).index) import_components_from_dataframe(n, df, c) for attr, df in pnl.items(): if not df.empty: import_series_from_dataframe(n, df, c, attr) _adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus, output) _, generator_strategies = get_aggregation_strategies(aggregation_strategies) generators, generators_pnl = aggregategenerators( n, busmap, custom_strategies=generator_strategies ) replace_components(n, "Generator", generators, generators_pnl) for one_port in aggregate_one_ports: df, pnl = aggregateoneport(n, busmap, component=one_port) replace_components(n, one_port, df, pnl) buses_to_del = n.buses.index.difference(busmap) n.mremove("Bus", buses_to_del) for c in n.branch_components: df = n.df(c) n.mremove(c, df.index[df.bus0.isin(buses_to_del) | df.bus1.isin(buses_to_del)]) def simplify_links(n, costs, config, output, aggregation_strategies=dict()): ## Complex multi-node links are folded into end-points logger.info("Simplifying connected link components") if n.links.empty: return n, n.buses.index.to_series() # Determine connected link components, ignore all links but DC adjacency_matrix = n.adjacency_matrix(branch_components=['Link'], weights=dict(Link=(n.links.carrier == 'DC').astype(float))) _, labels = connected_components(adjacency_matrix, directed=False) labels = pd.Series(labels, n.buses.index) G = n.graph() def split_links(nodes): nodes = frozenset(nodes) seen = set() supernodes = {m for m in nodes if len(G.adj[m]) > 2 or (set(G.adj[m]) - nodes)} for u in supernodes: for m, ls in G.adj[u].items(): if m not in nodes or m in seen: continue buses = [u, m] links = [list(ls)] #[name for name in ls]] while m not in (supernodes | seen): seen.add(m) for m2, ls in G.adj[m].items(): if m2 in seen or m2 == u: continue buses.append(m2) links.append(list(ls)) # [name for name in ls]) break else: # stub break m = m2 if m != u: yield pd.Index((u, m)), buses, links seen.add(u) busmap = n.buses.index.to_series() connection_costs_per_link = _prepare_connection_costs_per_link(n, costs, config) connection_costs_to_bus = pd.DataFrame(0., index=n.buses.index, columns=list(connection_costs_per_link)) for lbl in labels.value_counts().loc[lambda s: s > 2].index: for b, buses, links in split_links(labels.index[labels == lbl]): if len(buses) <= 2: continue logger.debug('nodes = {}'.format(labels.index[labels == lbl])) logger.debug('b = {}\nbuses = {}\nlinks = {}'.format(b, buses, links)) m = sp.spatial.distance_matrix(n.buses.loc[b, ['x', 'y']], n.buses.loc[buses[1:-1], ['x', 'y']]) busmap.loc[buses] = b[np.r_[0, m.argmin(axis=0), 1]] connection_costs_to_bus.loc[buses] += _compute_connection_costs_to_bus(n, busmap, costs, config, connection_costs_per_link, buses) all_links = [i for _, i in sum(links, [])] p_max_pu = config['links'].get('p_max_pu', 1.) lengths = n.links.loc[all_links, 'length'] name = lengths.idxmax() + '+{}'.format(len(links) - 1) params = dict( carrier='DC', bus0=b[0], bus1=b[1], length=sum(n.links.loc[[i for _, i in l], 'length'].mean() for l in links), p_nom=min(n.links.loc[[i for _, i in l], 'p_nom'].sum() for l in links), underwater_fraction=sum(lengths/lengths.sum() * n.links.loc[all_links, 'underwater_fraction']), p_max_pu=p_max_pu, p_min_pu=-p_max_pu, underground=False, under_construction=False ) logger.info("Joining the links {} connecting the buses {} to simple link {}".format(", ".join(all_links), ", ".join(buses), name)) n.mremove("Link", all_links) static_attrs = n.components["Link"]["attrs"].loc[lambda df: df.static] for attr, default in static_attrs.default.iteritems(): params.setdefault(attr, default) n.links.loc[name] = pd.Series(params) # n.add("Link", **params) logger.debug("Collecting all components using the busmap") _aggregate_and_move_components(n, busmap, connection_costs_to_bus, output, aggregation_strategies=aggregation_strategies) return n, busmap def remove_stubs(n, costs, config, output, aggregation_strategies=dict()): logger.info("Removing stubs") busmap = busmap_by_stubs(n) # ['country']) connection_costs_to_bus = _compute_connection_costs_to_bus(n, busmap, costs, config) _aggregate_and_move_components(n, busmap, connection_costs_to_bus, output, aggregation_strategies=aggregation_strategies) return n, busmap def aggregate_to_substations(n, aggregation_strategies=dict(), buses_i=None): # can be used to aggregate a selection of buses to electrically closest neighbors # if no buses are given, nodes that are no substations or without offshore connection are aggregated if buses_i is None: logger.info("Aggregating buses that are no substations or have no valid offshore connection") buses_i = list(set(n.buses.index)-set(n.generators.bus)-set(n.loads.bus)) weight = pd.concat({'Line': n.lines.length/n.lines.s_nom.clip(1e-3), 'Link': n.links.length/n.links.p_nom.clip(1e-3)}) adj = n.adjacency_matrix(branch_components=['Line', 'Link'], weights=weight) bus_indexer = n.buses.index.get_indexer(buses_i) dist = pd.DataFrame(dijkstra(adj, directed=False, indices=bus_indexer), buses_i, n.buses.index) dist[buses_i] = np.inf # bus in buses_i should not be assigned to different bus in buses_i for c in n.buses.country.unique(): incountry_b = n.buses.country == c dist.loc[incountry_b, ~incountry_b] = np.inf busmap = n.buses.index.to_series() busmap.loc[buses_i] = dist.idxmin(1) bus_strategies, generator_strategies = get_aggregation_strategies(aggregation_strategies) clustering = get_clustering_from_busmap(n, busmap, bus_strategies=bus_strategies, aggregate_generators_weighted=True, aggregate_generators_carriers=None, aggregate_one_ports=["Load", "StorageUnit"], line_length_factor=1.0, generator_strategies=generator_strategies, scale_link_capital_costs=False) return clustering.network, busmap def cluster(n, n_clusters, config, algorithm="hac", feature=None, aggregation_strategies=dict()): logger.info(f"Clustering to {n_clusters} buses") focus_weights = config.get('focus_weights', None) renewable_carriers = pd.Index([tech for tech in n.generators.carrier.unique() if tech.split('-', 2)[0] in config['renewable']]) clustering = clustering_for_n_clusters(n, n_clusters, custom_busmap=False, aggregation_strategies=aggregation_strategies, solver_name=config['solving']['solver']['name'], algorithm=algorithm, feature=feature, focus_weights=focus_weights) return clustering.network, clustering.busmap if __name__ == "__main__": if 'snakemake' not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake('simplify_network', simpl='f') configure_logging(snakemake) n = pypsa.Network(snakemake.input.network) aggregation_strategies = snakemake.config["clustering"].get("aggregation_strategies", {}) # translate str entries of aggregation_strategies to pd.Series functions: aggregation_strategies = { p: {k: getattr(pd.Series, v) for k,v in aggregation_strategies[p].items()} for p in aggregation_strategies.keys() } n, trafo_map = simplify_network_to_380(n) Nyears = n.snapshot_weightings.objective.sum() / 8760 technology_costs = load_costs(snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity'], Nyears) n, simplify_links_map = simplify_links(n, technology_costs, snakemake.config, snakemake.output, aggregation_strategies) n, stub_map = remove_stubs(n, technology_costs, snakemake.config, snakemake.output, aggregation_strategies=aggregation_strategies) busmaps = [trafo_map, simplify_links_map, stub_map] cluster_config = snakemake.config.get('clustering', {}).get('simplify_network', {}) if cluster_config.get('clustering', {}).get('simplify_network', {}).get('to_substations', False): n, substation_map = aggregate_to_substations(n, aggregation_strategies) busmaps.append(substation_map) # treatment of outliers (nodes without a profile for considered carrier): # all nodes that have no profile of the given carrier are being aggregated to closest neighbor if ( snakemake.config.get("clustering", {}).get("cluster_network", {}).get("algorithm", "hac") == "hac" or cluster_config.get("algorithm", "hac") == "hac" ): carriers = cluster_config.get("feature", "solar+onwind-time").split('-')[0].split('+') for carrier in carriers: buses_i = list(set(n.buses.index)-set(n.generators.query("carrier == @carrier").bus)) logger.info(f'clustering preparaton (hac): aggregating {len(buses_i)} buses of type {carrier}.') n, busmap_hac = aggregate_to_substations(n, aggregation_strategies, buses_i) busmaps.append(busmap_hac) if snakemake.wildcards.simpl: n, cluster_map = cluster(n, int(snakemake.wildcards.simpl), snakemake.config, cluster_config.get('algorithm', 'hac'), cluster_config.get('feature', None), aggregation_strategies) busmaps.append(cluster_map) # some entries in n.buses are not updated in previous functions, therefore can be wrong. as they are not needed # and are lost when clustering (for example with the simpl wildcard), we remove them for consistency: buses_c = {'symbol', 'tags', 'under_construction', 'substation_lv', 'substation_off'}.intersection(n.buses.columns) n.buses = n.buses.drop(buses_c, axis=1) update_p_nom_max(n) n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards))) n.export_to_netcdf(snakemake.output.network) busmap_s = reduce(lambda x, y: x.map(y), busmaps[1:], busmaps[0]) busmap_s.to_csv(snakemake.output.busmap) cluster_regions(busmaps, snakemake.input, snakemake.output)