import geopandas as gpd import atlite import pandas as pd import xarray as xr import scipy as sp if 'snakemake' not in globals(): from vresutils import Dict import yaml snakemake = Dict() with open('config.yaml') as f: snakemake.config = yaml.load(f) snakemake.input = Dict() snakemake.output = Dict() time = pd.date_range(freq='m', **snakemake.config['snapshots']) params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]])) cutout = atlite.Cutout(snakemake.config['renewable']['onwind']['cutout'], cutout_dir=snakemake.config['atlite']['cutout_dir'], **params) clustered_busregions_as_geopd = gpd.read_file(snakemake.input.regions_onshore).set_index('name', drop=True) clustered_busregions = pd.Series(clustered_busregions_as_geopd.geometry, index=clustered_busregions_as_geopd.index) I = cutout.indicatormatrix(clustered_busregions) for item in ["total","rural","urban"]: pop_layout = xr.open_dataarray(snakemake.input['pop_layout_'+item]) M = I.T.dot(sp.diag(I.dot(pop_layout.stack(spatial=('y', 'x'))))) nonzero_sum = M.sum(axis=0, keepdims=True) nonzero_sum[nonzero_sum == 0.] = 1. M_tilde = M/nonzero_sum temp_air = cutout.temperature(matrix=M_tilde.T,index=clustered_busregions.index) temp_air.to_netcdf(snakemake.output["temp_air_"+item]) temp_soil = cutout.soil_temperature(matrix=M_tilde.T,index=clustered_busregions.index) temp_soil.to_netcdf(snakemake.output["temp_soil_"+item])