#!/usr/bin/env python """ The script ``build_renewable_profiles.py`` calculates for each node several geographical properties: 1. the installable capacity (based on land-use) 2. the available generation time series (based on weather data) and 3. the average distance from the node for onshore wind, AC-connected offshore wind, DC-connected offshore wind and solar PV generators. 4. In addition for offshore wind it calculates the fraction of the grid connection which is under water. .. note:: Hydroelectric profiles are built in script :mod:`build_hydro_profiles`. Relevant settings ----------------- config.renewable (describes the parameters for onwind, offwind-ac, offwind-dc and solar) config.snapshots (describes the time dimensions of the selection of snapshots) Inputs ------ base_network land-use shapes region shapes for onshore, offshore and countries cutout Outputs ------- profile_{tech}.nc for tech in [onwind,offwind-ac,offwind-dc,solar] profile_{tech}.nc contains five common fields: profile (bus x time) - the per unit hourly availability factors for each node weight (bus) - the sum of the layout weighting for each node p_nom_max (bus) - the maximal installable capacity at the node (in MW) potential (y,x) - the layout of generator units at cutout grid cells inside the voronoi cell (maximal installable capacity at each grid cell multiplied by the capacity factor) average_distance (bus) - the average distance of units in the voronoi cell to the grid node (in km) for offshore we also have: underwater_fraction (bus) - the fraction of the average connection distance which is under water Description: ----------------- First the script computes how much of the technology can be installed at each cutout grid cell and each node using the library `GLAES `_. This uses the CORINE land use data, Natura2000 nature reserves and GEBCO for bathymetry. To compute the layout of generators in each node's voronoi cell, the installable potential in each grid cell is multiplied with the capacity factor at each grid cell (since we assume more generators are installed at cells with a higher capacity factor). This layout is then used to compute the generation availability time series from the atlite cutout. Two methods are available to compute the maximal installable potential for the node (`p_nom_max`): `simple` and `conservative`: `simple` adds up the installable potentials of the individual grid cells (if the model comes close to this limit, then the time series may slightly overestimate production since we assumed the geographical distribution is proportional to capacity factor). `conservative` assertains the nodal limit by increasing capacities proportional to the layout until the limit of an individual grid cell is reached. """ import matplotlib.pyplot as plt import os import atlite import numpy as np import xarray as xr import pandas as pd import multiprocessing as mp import glaes as gl import geokit as gk from osgeo import gdal from scipy.sparse import csr_matrix, vstack from pypsa.geo import haversine from vresutils import landuse as vlanduse from vresutils.array import spdiag import progressbar as pgb import logging logger = logging.getLogger(__name__) bounds = dx = dy = config = paths = gebco = clc = natura = None def init_globals(bounds_xXyY, n_dx, n_dy, n_config, n_paths): # global in each process of the multiprocessing.Pool global bounds, dx, dy, config, paths, gebco, clc, natura bounds = gk.Extent.from_xXyY(bounds_xXyY) dx = n_dx dy = n_dy config = n_config paths = n_paths gebco = gk.raster.loadRaster(paths["gebco"]) gebco.SetProjection(gk.srs.loadSRS(4326).ExportToWkt()) clc = gk.raster.loadRaster(paths["corine"]) clc.SetProjection(gk.srs.loadSRS(3035).ExportToWkt()) natura = gk.raster.loadRaster(paths["natura"]) def downsample_to_coarse_grid(bounds, dx, dy, mask, data): # The GDAL warp function with the 'average' resample algorithm needs a band of zero values of at least # the size of one coarse cell around the original raster or it produces erroneous results orig = mask.createRaster(data=data) padded_extent = mask.extent.castTo(bounds.srs).pad(max(dx, dy)).castTo(mask.srs) padded = padded_extent.fit((mask.pixelWidth, mask.pixelHeight)).warp(orig, mask.pixelWidth, mask.pixelHeight) orig = None # free original raster average = bounds.createRaster(dx, dy, dtype=gdal.GDT_Float32) assert gdal.Warp(average, padded, resampleAlg='average') == 1, "gdal warp failed: %s" % gdal.GetLastErrorMsg() return average def calculate_potential(gid, save_map=None): feature = gk.vector.extractFeature(paths["regions"], where=gid) ec = gl.ExclusionCalculator(feature.geom) corine = config.get("corine", {}) if isinstance(corine, list): corine = {'grid_codes': corine} if "grid_codes" in corine: ec.excludeRasterType(clc, value=corine["grid_codes"], invert=True) if corine.get("distance", 0.) > 0.: ec.excludeRasterType(clc, value=corine["distance_grid_codes"], buffer=corine["distance"]) if config.get("natura", False): ec.excludeRasterType(natura, value=1) if "max_depth" in config: ec.excludeRasterType(gebco, (None, -config["max_depth"])) # TODO compute a distance field as a raster beforehand if 'max_shore_distance' in config: ec.excludeVectorType(paths["country_shapes"], buffer=config['max_shore_distance'], invert=True) if 'min_shore_distance' in config: ec.excludeVectorType(paths["country_shapes"], buffer=config['min_shore_distance']) if save_map is not None: ec.draw() plt.savefig(save_map, transparent=True) plt.close() availability = downsample_to_coarse_grid(bounds, dx, dy, ec.region, np.where(ec.region.mask, ec._availability, 0)) return csr_matrix(gk.raster.extractMatrix(availability).flatten() / 100.) if __name__ == '__main__': pgb.streams.wrap_stderr() logging.basicConfig(level=snakemake.config['logging_level']) config = snakemake.config['renewable'][snakemake.wildcards.technology] time = pd.date_range(freq='m', **snakemake.config['snapshots']) params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]])) cutout = atlite.Cutout(config['cutout'], cutout_dir=os.path.dirname(snakemake.input.cutout), **params) minx, maxx, miny, maxy = cutout.extent dx = (maxx - minx) / (cutout.shape[1] - 1) dy = (maxy - miny) / (cutout.shape[0] - 1) bounds_xXyY = (minx - dx/2., maxx + dx/2., miny - dy/2., maxy + dy/2.) # Use GLAES to compute available potentials and the transition matrix paths = dict(snakemake.input) # Use the following for testing the default windows method on linux # mp.set_start_method('spawn') with mp.Pool(initializer=init_globals, initargs=(bounds_xXyY, dx, dy, config, paths), maxtasksperchild=20, processes=snakemake.config['atlite'].get('nprocesses', 2)) as pool: regions = gk.vector.extractFeatures(paths["regions"], onlyAttr=True) buses = pd.Index(regions['name'], name="bus") widgets = [ pgb.widgets.Percentage(), ' ', pgb.widgets.SimpleProgress(format='(%s)' % pgb.widgets.SimpleProgress.DEFAULT_FORMAT), ' ', pgb.widgets.Bar(), ' ', pgb.widgets.Timer(), ' ', pgb.widgets.ETA() ] progressbar = pgb.ProgressBar(prefix='Compute GIS potentials: ', widgets=widgets, max_value=len(regions)) matrix = vstack(list(progressbar(pool.imap(calculate_potential, regions.index)))) potentials = config['capacity_per_sqkm'] * vlanduse._cutout_cell_areas(cutout) potmatrix = matrix * spdiag(potentials.ravel()) potmatrix.data[potmatrix.data < 1.] = 0 # ignore weather cells where only less than 1 MW can be installed potmatrix.eliminate_zeros() resource = config['resource'] func = getattr(cutout, resource.pop('method')) correction_factor = config.get('correction_factor', 1.) if correction_factor != 1.: logger.warning('correction_factor is set as {}'.format(correction_factor)) capacity_factor = correction_factor * func(capacity_factor=True, show_progress='Compute capacity factors: ', **resource).stack(spatial=('y', 'x')).values layoutmatrix = potmatrix * spdiag(capacity_factor) profile, capacities = func(matrix=layoutmatrix, index=buses, per_unit=True, return_capacity=True, show_progress='Compute profiles: ', **resource) p_nom_max_meth = config.get('potential', 'conservative') if p_nom_max_meth == 'simple': p_nom_max = xr.DataArray(np.asarray(potmatrix.sum(axis=1)).squeeze(), [buses]) elif p_nom_max_meth == 'conservative': # p_nom_max has to be calculated for each bus and is the minimal ratio # (min over all weather grid cells of the bus region) between the available # potential (potmatrix) and the used normalised layout (layoutmatrix / # capacities), so we would like to calculate i.e. potmatrix / (layoutmatrix / # capacities). Since layoutmatrix = potmatrix * capacity_factor, this # corresponds to capacities/max(capacity factor in the voronoi cell) p_nom_max = xr.DataArray([1./np.max(capacity_factor[inds]) if len(inds) else 0. for inds in np.split(potmatrix.indices, potmatrix.indptr[1:-1])], [buses]) * capacities else: raise AssertionError('Config key `potential` should be one of "simple" (default) or "conservative",' ' not "{}"'.format(p_nom_max_meth)) layout = xr.DataArray(np.asarray(potmatrix.sum(axis=0)).reshape(cutout.shape), [cutout.meta.indexes[ax] for ax in ['y', 'x']]) # Determine weighted average distance from substation cell_coords = cutout.grid_coordinates() average_distance = [] for i in regions.index: row = layoutmatrix[i] distances = haversine(regions.loc[i, ['x', 'y']], cell_coords[row.indices])[0] average_distance.append((distances * (row.data / row.data.sum())).sum()) average_distance = xr.DataArray(average_distance, [buses]) ds = xr.merge([(correction_factor * profile).rename('profile'), capacities.rename('weight'), p_nom_max.rename('p_nom_max'), layout.rename('potential'), average_distance.rename('average_distance')]) if snakemake.wildcards.technology.startswith("offwind"): import geopandas as gpd from shapely.geometry import LineString offshore_shape = gpd.read_file(snakemake.input.offshore_shapes).unary_union underwater_fraction = [] for i in regions.index: row = layoutmatrix[i] centre_of_mass = (cell_coords[row.indices] * (row.data / row.data.sum())[:,np.newaxis]).sum(axis=0) line = LineString([centre_of_mass, regions.loc[i, ['x', 'y']]]) underwater_fraction.append(line.intersection(offshore_shape).length / line.length) ds['underwater_fraction'] = xr.DataArray(underwater_fraction, [buses]) # select only buses with some capacity and minimal capacity factor ds = ds.sel(bus=((ds['profile'].mean('time') > config.get('min_p_max_pu', 0.)) & (ds['p_nom_max'] > config.get('min_p_nom_max', 0.)))) if 'clip_p_max_pu' in config: ds['profile'].values[ds['profile'].values < config['clip_p_max_pu']] = 0. ds.to_netcdf(snakemake.output.profile)