# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Build mapping between cutout grid cells and population (total, urban, rural). """ import logging logger = logging.getLogger(__name__) import atlite import geopandas as gpd import numpy as np import pandas as pd import xarray as xr if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake("build_population_layouts") logging.basicConfig(level=snakemake.config["logging"]["level"]) cutout = atlite.Cutout(snakemake.input.cutout) grid_cells = cutout.grid.geometry # nuts3 has columns country, gdp, pop, geometry # population is given in dimensions of 1e3=k nuts3 = gpd.read_file(snakemake.input.nuts3_shapes).set_index("index") # Indicator matrix NUTS3 -> grid cells I = atlite.cutout.compute_indicatormatrix(nuts3.geometry, grid_cells) # Indicator matrix grid_cells -> NUTS3; inprinciple Iinv*I is identity # but imprecisions mean not perfect Iinv = cutout.indicatormatrix(nuts3.geometry) countries = np.sort(nuts3.country.unique()) urban_fraction = ( pd.read_csv( snakemake.input.urban_percent, header=None, index_col=0, names=["fraction"] ).squeeze() / 100.0 ) # fill missing Balkans values missing = ["AL", "ME", "MK"] reference = ["RS", "BA"] average = urban_fraction[reference].mean() fill_values = pd.Series({ct: average for ct in missing}) urban_fraction = pd.concat([urban_fraction, fill_values]) # population in each grid cell pop_cells = pd.Series(I.dot(nuts3["pop"])) # in km^2 cell_areas = grid_cells.to_crs(3035).area / 1e6 # pop per km^2 density_cells = pop_cells / cell_areas # rural or urban population in grid cell pop_rural = pd.Series(0.0, density_cells.index) pop_urban = pd.Series(0.0, density_cells.index) for ct in countries: logger.debug( f"The urbanization rate for {ct} is {round(urban_fraction[ct]*100)}%" ) indicator_nuts3_ct = nuts3.country.apply(lambda x: 1.0 if x == ct else 0.0) indicator_cells_ct = pd.Series(Iinv.T.dot(indicator_nuts3_ct)) density_cells_ct = indicator_cells_ct * density_cells pop_cells_ct = indicator_cells_ct * pop_cells # correct for imprecision of Iinv*I pop_ct = nuts3.loc[nuts3.country == ct, "pop"].sum() pop_cells_ct *= pop_ct / pop_cells_ct.sum() # The first low density grid cells to reach rural fraction are rural asc_density_i = density_cells_ct.sort_values().index asc_density_cumsum = pop_cells_ct[asc_density_i].cumsum() / pop_cells_ct.sum() rural_fraction_ct = 1 - urban_fraction[ct] pop_ct_rural_b = asc_density_cumsum < rural_fraction_ct pop_ct_urban_b = ~pop_ct_rural_b pop_ct_rural_b[indicator_cells_ct == 0.0] = False pop_ct_urban_b[indicator_cells_ct == 0.0] = False pop_rural += pop_cells_ct.where(pop_ct_rural_b, 0.0) pop_urban += pop_cells_ct.where(pop_ct_urban_b, 0.0) pop_cells = {"total": pop_cells} pop_cells["rural"] = pop_rural pop_cells["urban"] = pop_urban for key, pop in pop_cells.items(): ycoords = ("y", cutout.coords["y"].data) xcoords = ("x", cutout.coords["x"].data) values = pop.values.reshape(cutout.shape) layout = xr.DataArray(values, [ycoords, xcoords]) layout.to_netcdf(snakemake.output[f"pop_layout_{key}"])