# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Build COP time series for air- or ground-sourced heat pumps. """ import xarray as xr def coefficient_of_performance(delta_T, source="air"): """ COP is function of temp difference source to sink. The quadratic regression is based on Staffell et al. (2012) https://doi.org/10.1039/C2EE22653G. """ if source == "air": return 6.81 - 0.121 * delta_T + 0.000630 * delta_T**2 elif source == "soil": return 8.77 - 0.150 * delta_T + 0.000734 * delta_T**2 else: raise NotImplementedError("'source' must be one of ['air', 'soil']") if __name__ == "__main__": if "snakemake" not in globals(): from helper import mock_snakemake snakemake = mock_snakemake( "build_cop_profiles", simpl="", clusters=48, ) for area in ["total", "urban", "rural"]: for source in ["air", "soil"]: source_T = xr.open_dataarray(snakemake.input[f"temp_{source}_{area}"]) delta_T = snakemake.config["sector"]["heat_pump_sink_T"] - source_T cop = coefficient_of_performance(delta_T, source) cop.to_netcdf(snakemake.output[f"cop_{source}_{area}"])