# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Build time series for air and soil temperatures per clustered model region. """ import atlite import geopandas as gpd import numpy as np import pandas as pd import xarray as xr from dask.distributed import Client, LocalCluster if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake( "build_temperature_profiles", weather_year="", simpl="", clusters=48, ) nprocesses = int(snakemake.threads) cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1) client = Client(cluster, asynchronous=True) cutout_name = snakemake.input.cutout year = snakemake.wildcards.weather_year if year: snapshots = dict(start=year, end=str(int(year) + 1), inclusive="left") cutout_name = cutout_name.format(weather_year=year) else: snapshots = snakemake.params.snapshots time = pd.date_range(freq="h", **snapshots) if snakemake.config["atlite"].get("drop_leap_day", False): time = time[~((time.month == 2) & (time.day == 29))] cutout = atlite.Cutout(cutout_name).sel(time=time) clustered_regions = ( gpd.read_file(snakemake.input.regions_onshore).set_index("name").buffer(0) ) I = cutout.indicatormatrix(clustered_regions) pop_layout = xr.open_dataarray(snakemake.input.pop_layout) stacked_pop = pop_layout.stack(spatial=("y", "x")) M = I.T.dot(np.diag(I.dot(stacked_pop))) nonzero_sum = M.sum(axis=0, keepdims=True) nonzero_sum[nonzero_sum == 0.0] = 1.0 M_tilde = M / nonzero_sum temp_air = cutout.temperature( matrix=M_tilde.T, index=clustered_regions.index, dask_kwargs=dict(scheduler=client), show_progress=False, ) temp_air.to_netcdf(snakemake.output.temp_air) temp_soil = cutout.soil_temperature( matrix=M_tilde.T, index=clustered_regions.index, dask_kwargs=dict(scheduler=client), show_progress=False, ) temp_soil.to_netcdf(snakemake.output.temp_soil)