# -*- coding: utf-8 -*- import logging logger = logging.getLogger(__name__) import sys import numpy as np import pandas as pd import pypsa import yaml from helper import override_component_attrs from prepare_sector_network import prepare_costs idx = pd.IndexSlice opt_name = {"Store": "e", "Line": "s", "Transformer": "s"} def assign_carriers(n): if "carrier" not in n.lines: n.lines["carrier"] = "AC" def assign_locations(n): for c in n.iterate_components(n.one_port_components | n.branch_components): ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index) for i in ifind.unique(): names = ifind.index[ifind == i] if i == -1: c.df.loc[names, "location"] = "" else: c.df.loc[names, "location"] = names.str[:i] def calculate_nodal_cfs(n, label, nodal_cfs): # Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff for c in n.iterate_components( (n.branch_components ^ {"Line", "Transformer"}) | n.controllable_one_port_components ^ {"Load", "StorageUnit"} ): capacities_c = c.df.groupby(["location", "carrier"])[ opt_name.get(c.name, "p") + "_nom_opt" ].sum() if c.name == "Link": p = c.pnl.p0.abs().mean() elif c.name == "Generator": p = c.pnl.p.abs().mean() elif c.name == "Store": p = c.pnl.e.abs().mean() else: sys.exit() c.df["p"] = p p_c = c.df.groupby(["location", "carrier"])["p"].sum() cf_c = p_c / capacities_c index = pd.MultiIndex.from_tuples( [(c.list_name,) + t for t in cf_c.index.to_list()] ) nodal_cfs = nodal_cfs.reindex(index.union(nodal_cfs.index)) nodal_cfs.loc[index, label] = cf_c.values return nodal_cfs def calculate_cfs(n, label, cfs): for c in n.iterate_components( n.branch_components | n.controllable_one_port_components ^ {"Load", "StorageUnit"} ): capacities_c = ( c.df[opt_name.get(c.name, "p") + "_nom_opt"].groupby(c.df.carrier).sum() ) if c.name in ["Link", "Line", "Transformer"]: p = c.pnl.p0.abs().mean() elif c.name == "Store": p = c.pnl.e.abs().mean() else: p = c.pnl.p.abs().mean() p_c = p.groupby(c.df.carrier).sum() cf_c = p_c / capacities_c cf_c = pd.concat([cf_c], keys=[c.list_name]) cfs = cfs.reindex(cf_c.index.union(cfs.index)) cfs.loc[cf_c.index, label] = cf_c return cfs def calculate_nodal_costs(n, label, nodal_costs): # Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff for c in n.iterate_components( n.branch_components | n.controllable_one_port_components ^ {"Load"} ): c.df["capital_costs"] = ( c.df.capital_cost * c.df[opt_name.get(c.name, "p") + "_nom_opt"] ) capital_costs = c.df.groupby(["location", "carrier"])["capital_costs"].sum() index = pd.MultiIndex.from_tuples( [(c.list_name, "capital") + t for t in capital_costs.index.to_list()] ) nodal_costs = nodal_costs.reindex(index.union(nodal_costs.index)) nodal_costs.loc[index, label] = capital_costs.values if c.name == "Link": p = c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum() elif c.name == "Line": continue elif c.name == "StorageUnit": p_all = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0) p_all[p_all < 0.0] = 0.0 p = p_all.sum() else: p = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0).sum() # correct sequestration cost if c.name == "Store": items = c.df.index[ (c.df.carrier == "co2 stored") & (c.df.marginal_cost <= -100.0) ] c.df.loc[items, "marginal_cost"] = -20.0 c.df["marginal_costs"] = p * c.df.marginal_cost marginal_costs = c.df.groupby(["location", "carrier"])["marginal_costs"].sum() index = pd.MultiIndex.from_tuples( [(c.list_name, "marginal") + t for t in marginal_costs.index.to_list()] ) nodal_costs = nodal_costs.reindex(index.union(nodal_costs.index)) nodal_costs.loc[index, label] = marginal_costs.values return nodal_costs def calculate_costs(n, label, costs): for c in n.iterate_components( n.branch_components | n.controllable_one_port_components ^ {"Load"} ): capital_costs = c.df.capital_cost * c.df[opt_name.get(c.name, "p") + "_nom_opt"] capital_costs_grouped = capital_costs.groupby(c.df.carrier).sum() capital_costs_grouped = pd.concat([capital_costs_grouped], keys=["capital"]) capital_costs_grouped = pd.concat([capital_costs_grouped], keys=[c.list_name]) costs = costs.reindex(capital_costs_grouped.index.union(costs.index)) costs.loc[capital_costs_grouped.index, label] = capital_costs_grouped if c.name == "Link": p = c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum() elif c.name == "Line": continue elif c.name == "StorageUnit": p_all = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0) p_all[p_all < 0.0] = 0.0 p = p_all.sum() else: p = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0).sum() # correct sequestration cost if c.name == "Store": items = c.df.index[ (c.df.carrier == "co2 stored") & (c.df.marginal_cost <= -100.0) ] c.df.loc[items, "marginal_cost"] = -20.0 marginal_costs = p * c.df.marginal_cost marginal_costs_grouped = marginal_costs.groupby(c.df.carrier).sum() marginal_costs_grouped = pd.concat([marginal_costs_grouped], keys=["marginal"]) marginal_costs_grouped = pd.concat([marginal_costs_grouped], keys=[c.list_name]) costs = costs.reindex(marginal_costs_grouped.index.union(costs.index)) costs.loc[marginal_costs_grouped.index, label] = marginal_costs_grouped # add back in all hydro # costs.loc[("storage_units", "capital", "hydro"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="hydro", "p_nom"].sum() # costs.loc[("storage_units", "capital", "PHS"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="PHS", "p_nom"].sum() # costs.loc[("generators", "capital", "ror"),label] = (0.02)*3e6*n.generators.loc[n.generators.group=="ror", "p_nom"].sum() return costs def calculate_cumulative_cost(): planning_horizons = snakemake.config["scenario"]["planning_horizons"] cumulative_cost = pd.DataFrame( index=df["costs"].sum().index, columns=pd.Series(data=np.arange(0, 0.1, 0.01), name="social discount rate"), ) # discount cost and express them in money value of planning_horizons[0] for r in cumulative_cost.columns: cumulative_cost[r] = [ df["costs"].sum()[index] / ((1 + r) ** (index[-1] - planning_horizons[0])) for index in cumulative_cost.index ] # integrate cost throughout the transition path for r in cumulative_cost.columns: for cluster in cumulative_cost.index.get_level_values(level=0).unique(): for ll in cumulative_cost.index.get_level_values(level=1).unique(): for sector_opts in cumulative_cost.index.get_level_values( level=2 ).unique(): cumulative_cost.loc[ (cluster, ll, sector_opts, "cumulative cost"), r ] = np.trapz( cumulative_cost.loc[ idx[cluster, ll, sector_opts, planning_horizons], r ].values, x=planning_horizons, ) return cumulative_cost def calculate_nodal_capacities(n, label, nodal_capacities): # Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff for c in n.iterate_components( n.branch_components | n.controllable_one_port_components ^ {"Load"} ): nodal_capacities_c = c.df.groupby(["location", "carrier"])[ opt_name.get(c.name, "p") + "_nom_opt" ].sum() index = pd.MultiIndex.from_tuples( [(c.list_name,) + t for t in nodal_capacities_c.index.to_list()] ) nodal_capacities = nodal_capacities.reindex(index.union(nodal_capacities.index)) nodal_capacities.loc[index, label] = nodal_capacities_c.values return nodal_capacities def calculate_capacities(n, label, capacities): for c in n.iterate_components( n.branch_components | n.controllable_one_port_components ^ {"Load"} ): capacities_grouped = ( c.df[opt_name.get(c.name, "p") + "_nom_opt"].groupby(c.df.carrier).sum() ) capacities_grouped = pd.concat([capacities_grouped], keys=[c.list_name]) capacities = capacities.reindex( capacities_grouped.index.union(capacities.index) ) capacities.loc[capacities_grouped.index, label] = capacities_grouped return capacities def calculate_curtailment(n, label, curtailment): avail = ( n.generators_t.p_max_pu.multiply(n.generators.p_nom_opt) .sum() .groupby(n.generators.carrier) .sum() ) used = n.generators_t.p.sum().groupby(n.generators.carrier).sum() curtailment[label] = (((avail - used) / avail) * 100).round(3) return curtailment def calculate_energy(n, label, energy): for c in n.iterate_components(n.one_port_components | n.branch_components): if c.name in n.one_port_components: c_energies = ( c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0) .sum() .multiply(c.df.sign) .groupby(c.df.carrier) .sum() ) else: c_energies = pd.Series(0.0, c.df.carrier.unique()) for port in [col[3:] for col in c.df.columns if col[:3] == "bus"]: totals = ( c.pnl["p" + port] .multiply(n.snapshot_weightings.generators, axis=0) .sum() ) # remove values where bus is missing (bug in nomopyomo) no_bus = c.df.index[c.df["bus" + port] == ""] totals.loc[no_bus] = n.component_attrs[c.name].loc[ "p" + port, "default" ] c_energies -= totals.groupby(c.df.carrier).sum() c_energies = pd.concat([c_energies], keys=[c.list_name]) energy = energy.reindex(c_energies.index.union(energy.index)) energy.loc[c_energies.index, label] = c_energies return energy def calculate_supply(n, label, supply): """ Calculate the max dispatch of each component at the buses aggregated by carrier. """ bus_carriers = n.buses.carrier.unique() for i in bus_carriers: bus_map = n.buses.carrier == i bus_map.at[""] = False for c in n.iterate_components(n.one_port_components): items = c.df.index[c.df.bus.map(bus_map).fillna(False)] if len(items) == 0: continue s = ( c.pnl.p[items] .max() .multiply(c.df.loc[items, "sign"]) .groupby(c.df.loc[items, "carrier"]) .sum() ) s = pd.concat([s], keys=[c.list_name]) s = pd.concat([s], keys=[i]) supply = supply.reindex(s.index.union(supply.index)) supply.loc[s.index, label] = s for c in n.iterate_components(n.branch_components): for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]: items = c.df.index[c.df["bus" + end].map(bus_map).fillna(False)] if len(items) == 0: continue # lots of sign compensation for direction and to do maximums s = (-1) ** (1 - int(end)) * ( (-1) ** int(end) * c.pnl["p" + end][items] ).max().groupby(c.df.loc[items, "carrier"]).sum() s.index = s.index + end s = pd.concat([s], keys=[c.list_name]) s = pd.concat([s], keys=[i]) supply = supply.reindex(s.index.union(supply.index)) supply.loc[s.index, label] = s return supply def calculate_supply_energy(n, label, supply_energy): """ Calculate the total energy supply/consuption of each component at the buses aggregated by carrier. """ bus_carriers = n.buses.carrier.unique() for i in bus_carriers: bus_map = n.buses.carrier == i bus_map.at[""] = False for c in n.iterate_components(n.one_port_components): items = c.df.index[c.df.bus.map(bus_map).fillna(False)] if len(items) == 0: continue s = ( c.pnl.p[items] .multiply(n.snapshot_weightings.generators, axis=0) .sum() .multiply(c.df.loc[items, "sign"]) .groupby(c.df.loc[items, "carrier"]) .sum() ) s = pd.concat([s], keys=[c.list_name]) s = pd.concat([s], keys=[i]) supply_energy = supply_energy.reindex(s.index.union(supply_energy.index)) supply_energy.loc[s.index, label] = s for c in n.iterate_components(n.branch_components): for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]: items = c.df.index[c.df["bus" + str(end)].map(bus_map).fillna(False)] if len(items) == 0: continue s = (-1) * c.pnl["p" + end][items].multiply( n.snapshot_weightings.generators, axis=0 ).sum().groupby(c.df.loc[items, "carrier"]).sum() s.index = s.index + end s = pd.concat([s], keys=[c.list_name]) s = pd.concat([s], keys=[i]) supply_energy = supply_energy.reindex( s.index.union(supply_energy.index) ) supply_energy.loc[s.index, label] = s return supply_energy def calculate_metrics(n, label, metrics): metrics_list = [ "line_volume", "line_volume_limit", "line_volume_AC", "line_volume_DC", "line_volume_shadow", "co2_shadow", ] metrics = metrics.reindex(pd.Index(metrics_list).union(metrics.index)) metrics.at["line_volume_DC", label] = (n.links.length * n.links.p_nom_opt)[ n.links.carrier == "DC" ].sum() metrics.at["line_volume_AC", label] = (n.lines.length * n.lines.s_nom_opt).sum() metrics.at["line_volume", label] = metrics.loc[ ["line_volume_AC", "line_volume_DC"], label ].sum() if hasattr(n, "line_volume_limit"): metrics.at["line_volume_limit", label] = n.line_volume_limit metrics.at["line_volume_shadow", label] = n.line_volume_limit_dual if "CO2Limit" in n.global_constraints.index: metrics.at["co2_shadow", label] = n.global_constraints.at["CO2Limit", "mu"] return metrics def calculate_prices(n, label, prices): prices = prices.reindex(prices.index.union(n.buses.carrier.unique())) # WARNING: this is time-averaged, see weighted_prices for load-weighted average prices[label] = n.buses_t.marginal_price.mean().groupby(n.buses.carrier).mean() return prices def calculate_weighted_prices(n, label, weighted_prices): # Warning: doesn't include storage units as loads weighted_prices = weighted_prices.reindex( pd.Index( [ "electricity", "heat", "space heat", "urban heat", "space urban heat", "gas", "H2", ] ) ) link_loads = { "electricity": [ "heat pump", "resistive heater", "battery charger", "H2 Electrolysis", ], "heat": ["water tanks charger"], "urban heat": ["water tanks charger"], "space heat": [], "space urban heat": [], "gas": ["OCGT", "gas boiler", "CHP electric", "CHP heat"], "H2": ["Sabatier", "H2 Fuel Cell"], } for carrier in link_loads: if carrier == "electricity": suffix = "" elif carrier[:5] == "space": suffix = carrier[5:] else: suffix = " " + carrier buses = n.buses.index[n.buses.index.str[2:] == suffix] if buses.empty: continue if carrier in ["H2", "gas"]: load = pd.DataFrame(index=n.snapshots, columns=buses, data=0.0) elif carrier[:5] == "space": load = heat_demand_df[buses.str[:2]].rename( columns=lambda i: str(i) + suffix ) else: load = n.loads_t.p_set[buses] for tech in link_loads[carrier]: names = n.links.index[n.links.index.to_series().str[-len(tech) :] == tech] if names.empty: continue load += ( n.links_t.p0[names].groupby(n.links.loc[names, "bus0"], axis=1).sum() ) # Add H2 Store when charging # if carrier == "H2": # stores = n.stores_t.p[buses+ " Store"].groupby(n.stores.loc[buses+ " Store", "bus"],axis=1).sum(axis=1) # stores[stores > 0.] = 0. # load += -stores weighted_prices.loc[carrier, label] = ( load * n.buses_t.marginal_price[buses] ).sum().sum() / load.sum().sum() # still have no idea what this is for, only for debug reasons. if carrier[:5] == "space": logger.debug(load * n.buses_t.marginal_price[buses]) return weighted_prices def calculate_market_values(n, label, market_values): # Warning: doesn't include storage units carrier = "AC" buses = n.buses.index[n.buses.carrier == carrier] ## First do market value of generators ## generators = n.generators.index[n.buses.loc[n.generators.bus, "carrier"] == carrier] techs = n.generators.loc[generators, "carrier"].value_counts().index market_values = market_values.reindex(market_values.index.union(techs)) for tech in techs: gens = generators[n.generators.loc[generators, "carrier"] == tech] dispatch = ( n.generators_t.p[gens] .groupby(n.generators.loc[gens, "bus"], axis=1) .sum() .reindex(columns=buses, fill_value=0.0) ) revenue = dispatch * n.buses_t.marginal_price[buses] market_values.at[tech, label] = revenue.sum().sum() / dispatch.sum().sum() ## Now do market value of links ## for i in ["0", "1"]: all_links = n.links.index[n.buses.loc[n.links["bus" + i], "carrier"] == carrier] techs = n.links.loc[all_links, "carrier"].value_counts().index market_values = market_values.reindex(market_values.index.union(techs)) for tech in techs: links = all_links[n.links.loc[all_links, "carrier"] == tech] dispatch = ( n.links_t["p" + i][links] .groupby(n.links.loc[links, "bus" + i], axis=1) .sum() .reindex(columns=buses, fill_value=0.0) ) revenue = dispatch * n.buses_t.marginal_price[buses] market_values.at[tech, label] = revenue.sum().sum() / dispatch.sum().sum() return market_values def calculate_price_statistics(n, label, price_statistics): price_statistics = price_statistics.reindex( price_statistics.index.union( pd.Index(["zero_hours", "mean", "standard_deviation"]) ) ) buses = n.buses.index[n.buses.carrier == "AC"] threshold = 0.1 # higher than phoney marginal_cost of wind/solar df = pd.DataFrame(data=0.0, columns=buses, index=n.snapshots) df[n.buses_t.marginal_price[buses] < threshold] = 1.0 price_statistics.at["zero_hours", label] = df.sum().sum() / ( df.shape[0] * df.shape[1] ) price_statistics.at["mean", label] = ( n.buses_t.marginal_price[buses].unstack().mean() ) price_statistics.at["standard_deviation", label] = ( n.buses_t.marginal_price[buses].unstack().std() ) return price_statistics def make_summaries(networks_dict): outputs = [ "nodal_costs", "nodal_capacities", "nodal_cfs", "cfs", "costs", "capacities", "curtailment", "energy", "supply", "supply_energy", "prices", "weighted_prices", "price_statistics", "market_values", "metrics", ] columns = pd.MultiIndex.from_tuples( networks_dict.keys(), names=["cluster", "ll", "opt", "planning_horizon"] ) df = {} for output in outputs: df[output] = pd.DataFrame(columns=columns, dtype=float) for label, filename in networks_dict.items(): logger.info(f"Make summary for scenario {label}, using {filename}") overrides = override_component_attrs(snakemake.input.overrides) n = pypsa.Network(filename, override_component_attrs=overrides) assign_carriers(n) assign_locations(n) for output in outputs: df[output] = globals()["calculate_" + output](n, label, df[output]) return df def to_csv(df): for key in df: df[key].to_csv(snakemake.output[key]) if __name__ == "__main__": if "snakemake" not in globals(): from helper import mock_snakemake snakemake = mock_snakemake("make_summary") logging.basicConfig(level=snakemake.config["logging"]["level"]) networks_dict = { (cluster, ll, opt + sector_opt, planning_horizon): "results/" + snakemake.params.RDIR + f"/postnetworks/elec_s{simpl}_{cluster}_l{ll}_{opt}_{sector_opt}_{planning_horizon}.nc" for simpl in snakemake.config["scenario"]["simpl"] for cluster in snakemake.config["scenario"]["clusters"] for opt in snakemake.config["scenario"]["opts"] for sector_opt in snakemake.config["scenario"]["sector_opts"] for ll in snakemake.config["scenario"]["ll"] for planning_horizon in snakemake.config["scenario"]["planning_horizons"] } Nyears = 1 costs_db = prepare_costs( snakemake.input.costs, snakemake.config["costs"], Nyears, ) df = make_summaries(networks_dict) df["metrics"].loc["total costs"] = df["costs"].sum() to_csv(df) if snakemake.config["foresight"] == "myopic": cumulative_cost = calculate_cumulative_cost() cumulative_cost.to_csv( f"results/" + snakemake.params.RDIR + "/csvs/cumulative_cost.csv" )